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This article covers the combinatorial synthesis of small

molecules with maximal structural diversity to generate a

collection of pure compounds that are attractive for lead

generation in a phenotypic, high-throughput screening

approach. Nature synthesises diverse small molecules, but

there are disadvantages with using natural product sources.

The efficient chemical synthesis of structural diversity (and

complexity) is the aim of diversity-oriented synthesis, and

recent progress is reviewed. Specific highlights include a

discussion of strategies to obtain structural diversity and an

analysis of molecular descriptors used to classify compounds.

The assessment of how successful one synthesis is versus

another is subjective, therefore we test-drive software to

assess structural diversity in combinatorial synthesis, which is

freely available via a web interface.
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Introduction
There are occasions in research when a structurally

diverse compound collection is just what is required.

For instance, imagine being faced with the challenge

of looking for a new antibacterial drug that selectively

kills bacteria but not mammalian cells. The traditional

approach would be to start with natural product extracts

and screen them in antibacterial assays. Nature produces

an astonishing array of structural diversity in secondary

metabolites and, moreover, they are structurally complex

too. Complex structures are likely to interact with biology

more selectively than flat, simple molecules. Therefore,

structural complexity is highly desirable because it is easy

to kill cells unselectively. Unfortunately, there are dis-

advantages with using natural product extracts. Firstly,

nature does not make secondary metabolites in a pure

form; therefore, the extracts are usually screened as

mixtures of many compounds, leaving the problem of
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purifying and identifying the active component(s). Sec-

ondly, the natural product extract may come from a

limited source, leaving a supply problem. Thirdly, the

active natural product may be so complex structurally,

such as erythromycin, that making analogues to optimise

activity is a formidable synthetic challenge. Fourthly, the

chemistry space encompassed by natural products is

unlikely to be the only region useful for discovering

physical or biological properties of interest and, moreover,

may not be the most productive region [1��]. These com-

plications have led organic chemists to take the comple-

mentary approach of synthesizing structurally diverse and

complex (natural-product-like) small molecules directly

(Figure 1), an approach known as diversity-oriented synth-

esis (DOS) [1��,2,3]. Pure compounds can be synthesized

for screening in any quantity and structure–activity rela-

tionship studies are inherently simpler to conduct, because

DOS can be adapted easily to a focussed combinatorial

synthesis of analogues [4,5�].

Drug-discovery companies often bias the small molecules

that they make to fall within certain defined physical

properties to increase the chances that their lead com-

pounds will be orally bio-available [6]; however, DOS is

also useful outside of drug discovery programmes. A lot

can be leant from the effects of small molecules on

biological systems, and this more academic application

of DOS has been termed chemical genetics [7–9]. Small

molecules have the potential to selectively modulate

every function of every protein and this ultimate aim is

known as chemical genomics [10]. Since the only require-

ment for screening small molecules in chemical genetic

screens is that they must be soluble in the assay media,

the structural diversity of useful compounds is vastly

increased.

So there is a clear justification for the synthesis of struc-

tural diversity, but structural diversity is subjective. DOS

is in itself a subjective expression; since, in an extreme

example, the racemic synthesis of enantiomers could be

said to be a diversity-oriented synthesis (although we do

not endorse this) as the two products are not identical. By

definition, the synthesis of a collection of compounds

must incorporate structural diversity; therefore, DOS has

been freely used in the literature. DOS is the deliberate,

simultaneous and efficient synthesis of more than one

target compound in a diversity-driven approach (i.e. a

hypothesis-generating approach rather than a purely

hypothesis-based approach) [3]. But how do you assess

the degree of structural diversity created? Intuition? It is

clear that a less subjective method of assessment is

required.
www.sciencedirect.com
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Target-oriented synthesis (TOS) versus focussed library synthesis versus diversity-oriented synthesis (DOS) [32��]. DOS concerns the efficient

synthesis of structurally diverse (and complex) small molecules (i.e. where the molecules differ in their (i) attached groups, (ii) stereochemistry,

(iii) functional groups and (iv) molecular frameworks). TOS aims to synthesize a single target molecule, whereas a focussed library generates

structurally similar target structures. Synthetic pathways in DOS are branched and divergent and the planning strategy extends simple and

similar compounds to more complex and diverse compounds. Retrosynthetic analysis concepts focus on the existence of a defined target

structure [33]. In DOS there is no single target structure and therefore retrosynthetic analysis cannot be used directly and a forward synthetic

analysis algorithm is required. The three-dimensional grids of molecular descriptors illustrate the product(s) of the syntheses in chemical

descriptor space (see later).
This commentary attempts to cover two issues: firstly, to

review synthetic strategies used to obtain structural diver-

sity; and, secondly, to assess the degree of structural

diversity obtained in DOS libraries computationally.

To assess structural diversity computationally we need

to use molecular descriptors.

Strategies for structural diversity
Structural diversity is essential for lead generation, as

compounds that look the same structurally are likely to

share similar physical and biological properties. A collec-

tion of compounds with the highest level of structural

diversity will consist of molecules that have different

building blocks, stereochemistries, functional groups

and molecular frameworks [3]. Consider a coupling reac-

tion that involves a substrate, a building block (or more

than one building block for multicomponent coupling

reactions), and a reagent to give the product. In simple

terms, strategies to generate structural diversity would

involve varying the building block (appendage decora-

tion), reagent (constitutional isomer generation, stereo-

isomer generation, divergent reaction pathways) or

substrate (divergent folding pathways). The most suc-

cessful syntheses of structural diversity incorporate multi-

ple strategies.

Appendage decoration is the simplest diversity-

generating processes and a central feature in combinator-

ial chemistry, particularly to improve the biological activ-

ity of a lead drug compound; it involves the use of

coupling reactions to attach different building blocks to

a common molecular framework. Many examples are

available from the literature of this approach to combina-

torial synthesis. For example, Maltais et al. synthesized
www.sciencedirect.com
new 3b-substituted androsterones (1, Figure 2), which are

potential cancer chemotherapeutics, by varying amine

and acid chloride building blocks [11]. Hergenrother

and co-workers identified a small molecule that selec-

tively induces apoptosis in cancer cells from a focussed

combinatorial library of N-acylated aromatic amines (2)

based on a natural product from Isodon excisus [12�].
Researchers from Abbott functionalised a common scaf-

fold with amines at two positions to generate selective

histamine H3 receptor antagonists (3) [13]. Zhang et al.
synthesized the first 2-quinoxalinols library (4) and tested

the compounds for their inhibition of mouse macrophage

cytokine response [14]. If only appendage decoration is

used then all the products will have the same molecular

frameworks, which is ideal if a focussed library is required.

Nevertheless, if a very diverse range of building blocks is

used then, although the scaffold is the same, the overall

structural diversity is high. For example, Wu et al. have

discovered selective a–fucosidase inhibitors by attaching

60 structurally diverse carboxylic acids to 5 [15]. To

generate an even greater degree of structural diversity

in the scaffold, other strategies need to be incorporated

into the synthesis too.

Constitutional isomer generation involves using chemo-

selective and/or regioselective reactions to synthesize dif-

ferent product isomers. Stereoisomer generation involves

using reactions that proceed with diastereoselectivity

and/or enantioselectivity. Divergent reaction pathways

are a very effective way of generating structural diversity,

in particular, diverse molecular frameworks and func-

tional groups. Skeletal diversity is generated by using

different reagents to transform a common substrate into a

collection of products having varied molecular skeletons.
Current Opinion in Chemical Biology 2005, 9:304–309
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Combinatorial libraries using the appendage decoration strategy. Libraries of (1) 3b-substituted androsterones [11], (2) N-acylated aromatic

amines [12�], (3) histamine H3 receptor antagonists [13], (4) 2-quinoxalinols [14] and (5) a-fucosidase inhibitors [15] are illustrated.
Divergent folding pathways utilizes substrates with dif-

ferent appendages that pre-encode skeletal information

into a collection of products having distinct molecular

skeletons using common reaction conditions. Most

DOS libraries use several strategies to generate structural

diversity.

For example, Schreiber and co-workers cyclized (‘folded’)

amino alcohols functionalised with building blocks

(ortho-bromobenzaldehydes and ortho-bromobenzyl bro-

mides) to give the kinetic atropisomer 6, the thermody-

namic atropisomer 7 could be accessed selectively by

heat (Figure 3). In addition, divergent reactions acces-

sed acyclic analogues [16]. Diastereomers are usually

accessed by diastereoselective reactions, but Itami et al.
have illustrated the synthesis of E- and Z-isomers,

along with other analogues of tamoxifen 8, by altering

the order of building block addition [17]. Different

stereoisomer scaffold fragments were combined to form

a diverse range of macrolactone molecular frameworks

[18]. Sello et al. have exemplified the use of stereochem-

istry from building blocks to pre-encode skeletal informa-

tion. Substrates were synthesized that could undergo

either a ROM/RCM or an RCM reaction (where ROM

is ring-opening metathesis and RCM is ring-closing

metathesis) using the same reagent and conditions.

The outcome of the pathway selected for each substrate

(9) was determined by the stereochemistry of a single

substrate substituent R* [19]. Alternatively, Oguri et al.
have elegantly demonstrated that six structurally diverse

indole alkaloid-like frameworks can be generated by

shifting the relevant functionality around three points

on a starting scaffold. A rhodium-catalysed tandem

cyclization-cycloaddition reaction was used to efficiently

generate distinct frameworks (10 and 11) with complete

diastereocontrol [20�]. Divergent reaction pathways have

been successfully demonstrated with the dihydroisoqui-

noline [21] and dicyclopropylamino alkene [22]. Burke
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et al. have elegantly combined divergent reactions of

furaldehydes that pre-encoded divergent folding path-

ways via the Achmatowicz reaction and related transfor-

mations [23�,24].

Molecular descriptors: generation and
representation
To assess the molecular diversity of a collection of small

molecules on a large scale it is necessary to use computer

algorithms that, broadly speaking, consist of two opera-

tions. Firstly, the structures are put into ‘chemical

descriptor space’ using molecular descriptors; secondly,

diversity in chemical descriptor space is calculated [25].

The calculation of descriptors creates an abstract repre-

sentation of the molecule [26,27]. Representations of

molecules can be classified according to their dimension-

ality [28]:

1. One-dimensional (1D) with bulk properties such as

volume, molecular weight and log P [29].

2. Two-dimensional descriptors (2D) are derived from

the connectivity table [30] of a molecular structure.

3. Three-dimensional descriptors (3D) use geometrical

information from points in 3D space.

Since binding of a ligand to a target is an event in space,

the geometry of the ligand in relation to that of the

binding pocket is crucial. Is it still advisable to use a

2D method over a 3D method in certain situations?

Molecules are not rigid entities, they are conformationally

flexible, especially if many single bonds are present in a

molecule, leading to a ‘curse of dimensionality’ when

dealing with 3D information. In addition, since the active

(binding) conformation of a structure is usually unknown,

most of the conformations cannot be excluded. Dealing

with the complete conformational ensemble results in an

increase in noise, since virtually every spatial arrange-

ment can be fulfilled by the ligand. 2D methods, on the
www.sciencedirect.com
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Figure 3
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Strategies to give structurally diverse molecular frameworks. Skeletal diversity can be generated by constitutional isomer and stereoisomer generation,

divergent reaction pathways and divergent folding pathways.
other hand, do not explicitly capture shape; however, at

least locally, shape is implicitly contained in the connec-

tivity table. Therefore the information one has to deal with

is greatly reduced, eliminating noise. This leads to a much

faster generation of results while often retaining their

validity. Atom environment descriptors are employed as
Figure 4
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a molecular representation [31], as shown in Figure 4. For

diversity assessment, we calculate the average number of

atom environments per molecule. The absolute number of

features necessarily increases if non-identical structures

are added, but here we are interested in a diversity measure

relative to the size of the library. This software is freely
1 2
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m. The distance (‘layers’) from the central atom is shown in brackets.

ned its Sybyl atom types [34]. Sybyl atom types and are used to classify

atom fingerprint is calculated for each heavy atom in the molecule

m types at a given distance (n = 0, 1, 2) are recorded.
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Table 1

Diversity value of nine collections of compounds.

Library Reference Number of molecules Number of features Features per moleculea Diversity valueb

1 [11] 168 38 0.226 2

2 [12] 88 30 0.341 3

3 [13] 49 50 1.02 10

4 [14] 62 101 1.63 16

5 [18] 24 56 2.33 23

6 [17] 15 46 3.07 30

7 [16] 28 72 4.00 39

8 [15] 60 288 4.80 46

9 [19] 10 55 5.50 53

Idealc 40 414 10.4 100

The diversity value is calculated on a scale from 0 to 100 incorporating the number of features per molecule. aTo 3 significant figures. b Nearest integer

value. cThe ‘ideal diverse library’ consists of acetic acid, alliin, ampicillin, bee pheromone, benzene, bergenin, beta carotene, blebbistatin, caffeine,

catechin, cinnamic acid, ciprofloxacin, cocaine, cortisone, cyclosporin, cysteine, D-glucose, dopamine, erythromycin, fluzanim, fumiquinazoline G,

genistein isoflavonoid, glucosamine, L-DOPA, methane, methanol, morphine, nandrolone, omega-6 fatty acid, phenylalanine, quinine, rapamycin,

serotonin, streptomycin, sucrose, Taxol, testosterone, vitamin A, vitamin E and vitamin K.
available via a web interface at www.cheminformatics.org/

diversity.

To test drive this computational assessment of structural

diversity a range of combinatorial libraries was chosen

from the literature referenced above, and an ‘ideal diverse

library’ consisting of 40 diverse natural products. The

diversity values of each library are shown in Table 1.

The diverse libraries generally result in a higher value of

diversity than the focused libraries; however, certain

limitations require highlighting when evaluating the

diversity of a library. The diversity value is dependent

on the number of library members; therefore, very small

libraries (library members < 10) give illogical results that

should be utilized with caution. Also, since the program

compares library compounds using two factors — the

hybridization and the variation of heavy atoms — a

focused library using a common scaffold with varying

appendages that contain a wide variety of elements

and different degrees of hybridization will give a higher

value than perhaps expected. This program is a useful

tool in assessing the diversity of a library; however, it

should be employed with due care upon understanding

some of its limitations as outlined above. A more thorough

investigation will be published in due course.

Conclusions
This article has attempted to cover the combinatorial

synthesis of structural diversity, known as diversity-

oriented synthesis. Progress has been made over recent

years in the efficient synthesis of small molecules differing

in their building blocks, stereochemistry, functional groups

and molecular framework. However, without a means to

assess the success of a diversity-oriented synthesis it is

difficult to assess the success of the field in general. We

have exploited a free computer programme using

fragment-based molecular descriptors to quantify the
Current Opinion in Chemical Biology 2005, 9:304–309
structural diversity of collections of small molecules.

The results of using this software are in line with common

sense; however, the software should be used with caution

as library size and substituent groups influence the results.

We predict that likely future directions of DOS will be,

firstly, improvements in library design, synthetic metho-

dology and the computational assessment of structural

diversity, and, secondly, the use of the compound collec-

tions to discover small molecules with desired physical or

biological properties. The applications of small molecules

in so many different aspects of science and life in general

will guarantee that the emerging area of DOS has an

exciting future.

Update
A recent review by Perez on molecular diversity analysis

has been published [35�].
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