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Pseudomonas aeruginosa is an opportunistic pathogen capable of group behaviors, including biofilm forma-
tion and swarming motility. These group behaviors are regulated by both the intracellular signaling molecule
c-di-GMP and acylhomoserine lactone quorum-sensing systems. Here, we show that the Pseudomonas quino-
lone signal (PQS) system also contributes to the regulation of swarming motility. Specifically, our data indicate
that 2-heptyl-4-quinolone (HHQ), a precursor of PQS, likely induces the production of the phenazine-1-
carboxylic acid (PCA), which in turn acts via an as-yet-unknown downstream mechanism to repress swarming
motility. We show that this HHQ- and PCA-dependent swarming repression is apparently independent of
changes in global levels of c-di-GMP, suggesting complex regulation of this group behavior.

Pseudomonas aeruginosa is an opportunistic human patho-
gen capable of coordinated group behaviors, including swarm-
ing motility and biofilm formation. These group behaviors are
regulated by both the intracellular signaling molecule c-di-
GMP and the acylhomoserine lactone quorum-sensing (QS)
systems (7, 19, 26, 32, 53).

P. aeruginosa swarming motility occurs on semisolid surfaces
(i.e., on 0.5 to 0.7% agar) and is characterized by a fractal-like
pattern of tendrils emanating from the point of inoculation (5,
24). Swarming motility requires a functional flagellum and the
production of rhamnolipid biosurfactants, which are regulated
by the acylhomoserine lactones 3-oxo-C12-HSL and 3-OH-C4-
HSL (5, 35). Type IV pili, while not required for swarming, can
impact swarm patterning (5).

Swarming motility and biofilm formation are inversely cor-
related in P. aeruginosa PA14, and this relationship is, in part,
dependent on the intracellular level of c-di-GMP (26, 32, 33).
We previously reported that a variety of amino acids could
impact these group behaviors. In particular, we showed that
arginine represses swarming and stimulates biofilm formation
via an elevated intracellular pool of c-di-GMP (1). A �sadC
�roeA double mutant results in reduced intracellular levels of
this dinucleotide signal and thus relieves the arginine-mediated
repression of swarming (1, 33).

Relevant to the human host, arginine appears to be a sig-
nificant component of the cystic fibrosis patient (CF) lung (37).
Recent data show that various regions of the CF lung are
either low in oxygen or anoxic (45, 55). While P. aeruginosa can
ferment arginine under such oxygen-limiting conditions (49),

arginine in the CF lung is more likely assisting in redox bal-
ancing and cellular homeostasis under conditions promoting
pyruvate fermentation and anaerobic respiration rather than
promoting growth. Given the potential significance of arginine
in the context of the CF lung and the arginine-dependent
repression of swarming motility, we sought to identify molec-
ular mechanism(s) of swarming regulation by arginine.

Here, we report the role of the signal molecule 2-heptyl-4-
quinolone (HHQ) in the repression of swarm motility. We also
show that HHQ, an intermediate in the synthesis of the Pseu-
domonas quinolone signal (PQS), controls swarming by posi-
tively regulating phenazine production. Of the four phenazines
produced by P. aeruginosa, phenazine-1-carboxylic acid (PCA)
modulates swarming motility via an unknown downstream
mechanism. We present data to show that this HHQ/PCA-
dependent pathway for swarm repression is c-di-GMP inde-
pendent. Lastly, we present a model for the control of swarm-
ing motility that may be relevant in the context of the CF lung.

MATERIALS AND METHODS

Growth media. Strains, plasmids, and primers used in this study are listed in
Table 1. Pseudomonas aeruginosa strain UCBPP-PA14 (abbreviated as P. aerugi-
nosa PA14) was used in this study. P. aeruginosa PA14 and Escherichia coli were
cultured in lysogeny broth (LB) at 37°C and, when appropriate, supplemented
with antibiotics at the following concentrations: gentamicin (Gm), 10 �g ml�1

(E. coli) and 50 �g ml�1 (P. aeruginosa); carbenicillin (Cb), 50 �g ml�1 (E. coli)
and 250 �g ml�1 (P. aeruginosa). M63 minimal medium supplemented with
glucose (0.2%), arginine (0.4%), and MgSO4 (1 mM) was used for c-di-GMP
analysis. Swarming medium contained M8 salts (24), with glucose, arginine, and
MgSO4 at the same concentrations as those described for M63. When indicated,
arabinose was added at 0.2%, and HHQ and PQS dissolved in dimethyl sulfoxide
(DMSO) were added to the swarm agar medium (final concentration [Cf] � 0.5
�M), with equal volumes of DMSO in control plates. Phenazine-1-carboxylic
acid (PCA), from Princeton Bio-Molecular Research (Princeton, NJ), was added
to swarm medium from a stock of 500 mM in 5� M8, as indicated.

Molecular techniques. Plasmids constructed during the course of this study
were prepared using homologous recombination in Saccharomyces cerevisiae
(47). All restriction enzymes were obtained from New England BioLabs (Ips-
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TABLE 1. Strains, plasmids, and primers used in this study

Strain, primer, or plasmid Relevant genotype or primer sequence (5�33�) Source or
reference

Strains
S. cerevisiae InvSc1 MATa/MAT� leu2/leu2 trp1-289/trp1-289 ura3-52/ura3-52 his3-�1/his3-�1 Invitrogen
E. coli Top10 F� mcrA �(mrr-hsdRMS-mcrBC) �80 lacZ�M15 �lacX74 recA1 ara�139 �(ara leu)7697 galU galK rpsL

(Str) endA1 nupG
Invitrogen

E. coli S17-1 (	pir) thi pro hsdR-hsdM
 �recA RP4-2::TcMu-Km::Tn7 48
SMC 232 Wild-type P. aeruginosa PA14 40
SMC 3809 SMC 232 �sadC �roeA 33
SMC 5013 SMC 232 �pqsA Deb Hogan
SMC 5014 SMC 232 �pqsB This study
SMC 5015 SMC 232 �pqsD This study
SMC 5019 SMC 232 �phnAB Deb Hogan
SMC 5018 SMC 232 �pqsR 10
SMC 5016 SMC 232 �pqsE This study
SMC 5017 SMC 232 �pqsH 10
SMC 5021 SMC 232 �lasR 21
SMC 5022 SMC 232 rhlR::tetR 20
SMC 5023 SMC 232 �lasR rhlR::tetR 10
SMC 5020 SMC 232 �phzA1-G1 �phzA2-G2 13
SMC 5127 SMC 232 �phzH This study
SMC 5128 SMC 232 �phzM This study
SMC 5129 SMC 232 �phzHM This study
SMC 5123 SMC 232 SXO phzS This study
SMC 5124 SMC 232 �phzH SXO phzS This study
SMC 5125 SMC 232 �phzM SXO phzS This study
SMC 5126 SMC 232 �phzHM SXO phzS This study

Plasmids
pMQ30 Suicide vector; Gmr sacB URA3 CEN6/ARSH4 lacZ� 47
pKO pqsB PA0997 (pqsB) knockout construct in pMQ30 This study
pKO pqsD PA0999 (pqsD) knockout construct in pMQ30 This study
pKO pqsE PA1000 (pqsE) knockout construct in pMQ30 This study
pDPM73 Cloning vector (derivative of pMQ70), Ampr Cbr URA3 PBAD-araC CEN6/ARSH4 47
pPqsA PA0996 (pqsA); under the control of PBAD promoter; Cbr This study

Primers
pqsB dwst For CTG TTT TAT CAG ACC GCT TCT GCG TTC TGA TGG ATT CTG TCG GGC GTT CGC TAC G
pqsB dwst Rev AGT TCA CAG GTG ATC GCT GCC AGT TTG ACC GCC CGT TCC TCC GGA AGG TTG TCG

TGA
pqsB upst For TTA TCA CGA CAA CCT TCC GGA GGA ACG GGC GGT CAA ACT GGC AGC GAT CAC CTG

TGA AC
pqsB upst Rev GCG GAT AAC AAT TTC ACA CAG GAA ACA GCT CGG CGA AAC CCC AGC CGG TGG C
pqsD dwst For TTG ACC GGG AGC CGA AAG CCG TAC AGC CCT CCT CGG ACA CCG TGG TTC
pqsD dwst Rev CTG TTT TAT CAG ACC GCT TCT GCG TTC TGA TAC CTC AGC GAG TCT TGG TGG CAA

TTC TG
pqsD upst For GCG GAT AAC AAT TTC ACA CAG GAA ACA GCT CGC GAC GCT AGC GCG CAA C
pqsD upst Rev GTG TCC GAG GAG GGC TGT ACG GCT TTC GGC TCC CGG TCA ACT GGA T
pqsE dwst For CTG TTT TAT CAG ACC GCT TCT GCG TTC TGA TAA TCC GAT CCT GGC CGG GCT GGG

TTT
pqsE dwst Rev GGC GGC GAT CGC CGC AAT GGA TGT CCC GCC GGC CGG TTC ACC TCC TCA GGT TTA

CGG TAC
pqsE upst For GTA CCG TAA ACC TGA GGA GGT GAA CCG GCC GGC GGG ACA TCC ATT GCG GCG

ATC
pqsE upst Rev GCG GAT AAC AAT TTC ACA CAG GAA ACA GCT GTA CGG GCT GGG GTT GCC CAG

GCA C
phzH dwst For CTG TTT TAT CAG ACC GCT TCT GCG TTC TGA TAC GGA TCG TTG ATC GCT GTT TCG

ACC AA
phzH dwst Rev CGC CAC GCC CCG CGT CAC GCA GGG AAA CTC CTC TAA TTG ATG TTT TAT CGG GAA

ACT C
phzH upst For TCA ATT AGA GGA GTT TCC CTG CGT GAC GCG GGG CGT GGC
phzH upst Rev GCG GAT AAC AAT TTC ACA CAG GAA ACA GCT CAA GGC CAC TCG CAT GCC GCG
phzM dwst For CTG TTT TAT CAG ACC GCT TCT GCG TTC TGA TGT CGC ACT CGA CCC AGA AGT GGT

TCG G
phzM dwst Rev CAG CCG TTG AGA GTT CCG GTC TTT TAT TCT CTC TCG TTA CAC ATT TCC GTA ACC

CGA
phzM upst For GTA ACG AGA GAG AAT AAA AGA CCG GAA CTC TCA ACG GCT GGC CCC
phzM upst Rev GCG GAT AAC AAT TTC ACA CAG GAA ACA GCT CCG CGC CGA AGC GGC CGA C

Continued on following page
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wich, MA). Plasmids constructed in yeast were subsequently extracted by a
modified “smash and grab” method (2) and electroporated into E. coli for
confirmation by colony PCR (54), with minor modifications. Plasmids were
propagated in E. coli Top 10 (Invitrogen, Carlsbad, CA) for complementation
and in E. coli S17 for allelic exchange. Complementation constructs were ex-
tracted from bacteria using the Qiagen spin miniprep kit (Valencia, CA) and
electroporated into P. aeruginosa, as previously reported (9). Allelic exchange
constructs were conjugated into P. aeruginosa, as previously reported (25), and
exconjugants were selected and counterselected by gentamicin and 5% sucrose,
respectively. All resulting mutations were verified by PCR amplification of
genomic DNA from mutants using primers flanking the deletion mutation and
sequencing of the PCR products. Plasmid-harboring cells were maintained with
necessary antibiotic selection on both LB liquid and agar. All transposon mutants
were verified for correct transposon insertions via arbitrary primed PCR using
nested primers to amplify genomic DNA, modified from published reports (3,
36), followed by sequencing of the PCR products.

RNA extraction and expression studies. Stationary-phase, LB-grown P. aerugi-
nosa cultures were subcultured 1:1,000 into glucose-arginine M8 medium and
then incubated at 37°C for 24 h. Total RNA was extracted from the glucose-
arginine-grown cultures using the High Pure RNA isolation kit, and subsequent
cDNA synthesis was performed with the Transcriptor first-strand cDNA synthe-
sis kit (both kits are from Roche Applied Bioscience, Indianapolis, IN). Semi-
quantitative reverse transcription-PCR (semi-qRT-PCR) was performed with
NEB Taq DNA polymerase (Ipswich, MA).

To verify candidate genes from the microarray reanalysis, strains were scraped
from glucose-arginine swarm motility plates following incubation at 37°C, and
total RNA was extracted using the High Pure RNA isolation kit (Roche Applied
Bioscience, Indianapolis, IN). cDNA was synthesized using the DyNAmo cDNA
synthesis kit (Thermo Fisher Scientific, Waltham, MA), and subsequent qPCR
studies were performed using SYBR green PCR master mix on a 7500 fast
real-time PCR system (both are from Applied Biosystems, Bedford, MA).

Measurement of c-di-GMP levels. Nucleotide extraction from P. aeruginosa
cultures were performed as previously reported (33, 34), with modifications.
Briefly, a stationary-phase, LB-grown P. aeruginosa culture was subcultured 1:100
into glucose-arginine M63 medium to an optical density at 600 nm (OD600) of
0.04. Cultures were harvested at an OD600 of 0.4 by centrifugation at 4°C for 10
min at 4,500 � g. Pellets were resuspended in 250 �l of extraction buffer
(acetonitrile-methanol-water [40:40:20] plus 0.1 N formic acid) and incubated at
�20°C for 30 min. Cell debris was pelleted for 5 min at 4°C, and the resulting
supernatant was adjusted to a pH of �7.5 by adding 15% (NH4)2HCO3. Nucle-
otide extractions were analyzed via the Acquity Ultra Performance liquid chro-
matography (LC) system coupled to a Quattro Premier XE mass spectrometer
(Waters Corporation, Milford, MA) (34). Each sample was compared to a

standard curve of c-di-GMP resuspended in water to quantify the amount of
nucleotide.

Microarray. The microarray data analyzed in this study was retrieved from the
NCBI (GEO number GSE17147). To analyze these data, Affymetrix probe
fluorescence values were first summarized and normalized using RMA (robust
multichip average) (23) as implemented in Bioconductor. We then calculated the
standard deviation for each probe and used Pearson distance to hierarchically
cluster the 50 probes with the largest standard deviations.

RESULTS

Isolation and initial characterization of the PA14_36280::Tn
and pqsA::Tn mutants. Two distinct group behaviors, swarming
motility and biofilm formation, are inversely correlated in
Pseudomonas aeruginosa PA14, and these phenotypes are reg-
ulated at least in part by the intracellular concentration of
c-di-GMP (4). We recently identified two diguanylate cyclases
(DGC), SadC and RoeA, and phosphodiesterase (PDE) BifA
as responsible for regulating biofilm formation and swarming
in P. aeruginosa PA14 (26, 32, 33). We also observed repression
of swarming motility in the presence of arginine, and this effect
is dependent upon the SadC and RoeA DGCs (Fig. 1A) (1).

To identify additional genes that may play a role in mediat-
ing the arginine-dependent repression of swarming motility in
P. aeruginosa PA14, we performed a genetic screen to identify
mutants that could swarm in the presence of this amino acid.
This screen was prompted in part by the fact that deletion of
the sadC and roeA DGCs could restore swarming on arginine
(Fig. 1A), indicating that we could identify such a class of
mutants.

We began by screening the P. aeruginosa PA14 nonredun-
dant mutant library (29) for strains capable of swarming on
arginine-containing medium. A total of 5,663 transposon mu-
tants were screened on arginine medium, of which 75 showed
a positive swarming phenotype in the initial screen. These 75
positive candidates were retested, and only 3 mutants demon-
strated a reproducible swarm-positive phenotype on arginine

TABLE 1—Continued

Strain, primer, or plasmid Relevant genotype or primer sequence (5�33�) Source or
reference

sxo phzS For TGT TTT ATC AGA CCG CTT CTG CGT TCT GAT CAG TAC TCG ATC CAT CGC GGC GAA C
sxo phzS Rev GCG GAT AAC AAT TTC ACA CAG GAA ACA GCT GCG AAG AAC GGC AAC ACG TCT TCC

AG
PA14_51430 For TTT TTT GGG CTA GCC CAA GGA AGC ACA ACC ATG TCC ACA TTG GCC AAC CTG ACC

GAG GTT
PA14_51430 Rev AGA AGA TTT TCA GCC TGA TAC AGA TTA AAT TCA ACA TGC CCG TTC CTC CGG AAG

GTT G
pqsB For (confirm) CCG AGC TGC GCC ACC TGG CC
pqsB Rev (confirm) CAG CGA ACA CCG GAT CGT CGT TTT CGT A
pqsD For (confirm) GTG TGC TGA GGC ATC GCC ATG TTG AAC C
pqsD Rev (confirm) CTG GAC GTC CCC CAA CAG GCA CAG GTC
pqsE For (confirm) GTT CCG GCG CGA CCT GGG GCG
pqsE Rev (confirm) TTT CCC CCA ATT GCG ACC GCT GCC
phzH For (confirm) GCG CCG CGA GCG GAC GG
phzH Rev (confirm) TCG AGA ACA ACG ACA AGA AGC GCT TCG
phzM For (confirm) CGA AGG AAT GGA TGT AGT GGT TCT CGC AAT AG
phzM Rev (confirm) TCG ACG CGC AGT GGG AAA TCG ACC
phzA For (RT) AAC GGT TAC AGC GGC ACA GCC TGT TC
phzA Rev (RT) CTC GAC CCA GAA GTG GTT CGG ATC CTC
phzG For (RT) TTT CCG AGT CCC TCA CCG GGA CCA TC
phzG Rev (RT) CGC GCT CGC CGA GTT CGG C
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medium. One of the mutants could not be complemented and
was not examined further. The characterization of the other
two mutants, with insertions in the PA14_36280 and pqsA
genes, is presented here.

Consistent with the phenotypes observed in the �sadC
�roeA mutant, we expected that candidates with transposon
insertions in genes affecting c-di-GMP metabolism or signaling
would emerge from the screen (i.e., with reduced c-di-GMP
levels). The candidate mutant 9_2E4 (Fig. 1A) had a trans-
poson insertion in the PA14_36280 gene, upstream of a gene
encoding a documented PDE, PA14_36260, which corresponds
to the PA2200 gene of P. aeruginosa PAO1 (27). Because the
transposon used to generate this library has an outward-facing
promoter, we predicted that the swarm phenotype of this mu-
tant might have been due to the induction of expression of the
PDE-encoding PA14_36260 gene. Consistent with this idea,
semiquantitative RT-PCR analysis revealed a higher level of
expression of the PDE-encoding PA14_36260 gene in the
PA14_36280::Tn (9_2E4) mutant than in the wild type (WT)
(Fig. 1B). This mutant helped serve to validate the utility of
this screening approach.

We also isolated an additional candidate, designated 1_2A5,
which demonstrated swarming motility on arginine swarm me-
dium, albeit with a less striking phenotype than observed
for the �sadC �roeA double mutant (compare Fig. 1A to C,
left). The transposon insertion in the 1_2A5 mutant was
mapped to the pqsA gene. The pqsA gene has no known DGCs
or PDEs in close proximity. Introduction of a wild-type copy of
the pqsA gene on a plasmid complemented the 1_2A5 mutant,
that is, restored the swarming-repressed phenotype (Fig. 1C).

To confirm the finding above, a strain carrying a deletion of
the pqsA gene was also tested on the arginine swarm medium;

the �pqsA deletion strain, like the transposon insertion mu-
tant, was capable of swarming on arginine-containing medium
(Fig. 1D). Furthermore, introduction of the wild-type pqsA
gene into the �pqsA mutant strain, but not the vector control,
complemented the swarming phenotype on arginine medium
(Fig. 1D).

Role of pqs genes in arginine-mediated swarm repression.
The pqsA gene is the first gene in an operon that also includes
the pqsBCDE genes. This operon and the bicistronic phnAB
operon are similarly regulated (Fig. 2A) (8, 31). The pqsABCD
and phnAB genes are required for the synthesis of HHQ, the
immediate precursor of 2-heptyl-3-hydroxy-4-quinolone (PQS)
(Fig. 2A) (for a review, see reference 22). HHQ is converted
into PQS by the flavin-dependent monooxygenase encoded by
the pqsH gene, which lies distant from the PQS operon (12, 18,
46). Although the pqsE gene is also in the pqsABCDE operon,
it has no known biosynthetic function but rather is shown to be
required for the expression of genes under the control of PQS
(17, 42). Lastly, the LysR-type transcriptional regulator PqsR
(also known as MvfR) positively regulates the expression of the
PQS operons (pqsABCDE and phnAB genes) and HHQ pro-
duction (50, 57).

Following the isolation of a mutation in the pqsA gene from
the screen, we hypothesized that arginine’s repressive effect on
swarming motility was mediated via the PQS system and its
quinolone molecule product(s). To test this hypothesis, we
assayed strains that carry various mutations in the pqsABCDE
and phnAB genes as well as the pqsH gene for their ability to
swarm on the arginine medium. The �pqsB, �pqsD, �phnAB,
and �pqsR mutants, similar to the �pqsA mutant, demon-
strated swarming motility in the presence of arginine (Fig. 2B,
left). However, under these same conditions, two mutants—
the �pqsE and �pqsH mutants—failed to swarm (Fig. 2B,
right).

FIG. 1. Mutating pqsA relieves arginine-mediated repression of
swarming motility. (A) Representative swarm phenotypes of the wild
type (WT), �sadC �roeA mutant, and 9_2E4 mutant on swarm me-
dium containing arginine. This and all subsequent swarm motility as-
says reported here are performed on swarm medium supplemented
with 0.4% arginine. (B) Semi-qRT-PCR analysis comparing the ex-
pression levels of the PA14_36260 gene, a known phosphodiesterase
(PDE) (27), in the PA14_36280::Tn mutant and wild type (WT). The
expression of the rplU gene was used as a control for a gene not
expected to differ between these strains. (C) Representative swarm
phenotypes of the pqsA::Tn mutant, the pqsA::Tn strain carrying the
vector control (
pVector), and the strain complemented with a wild-
type copy of the pqsA gene (pPqsA). (D) Representative swarm phe-
notypes of the �pqsA mutant, the mutant carrying a vector control
(
pVector), and the mutant complemented with a wild-type copy of
the pqsA gene (
pPqsA).

FIG. 2. HHQ mediates swarm repression by arginine. (A, top) Or-
ganization of the PQS operon (pqsABCDE, phnAB, pqsR [mvfR]) and
the distant pqsH gene in P. aeruginosa PA14; (bottom) a simplified
biosynthetic pathway of PQS. The genes involved in each portion of
the pathway are indicated above the arrows. Also shown are the pre-
cursor, HHQ, and the final product, PQS. (B) Representative swarm
phenotypes of the �pqsB, �pqsD, �phnAB, �pqsR, �pqsE, and �pqsH
mutants. (C) Representative swarm phenotypes of other quorum-sens-
ing (QS), �lasR, rhlR::tetR, and �lasR rhlR::tetR mutants.
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Because the PQS system is one of three identified quorum-
sensing (QS) systems in P. aeruginosa, we also tested strains
with mutations in two other QS systems, Las and Rhl (16), for
their potential role in swarm repression in the presence of
arginine. Strains carrying mutations in the Las and Rhl sys-
tems, the �lasR, rhlR::tetR, and �lasR rhlR::tetR mutants, like
the wild type, did not swarm on arginine-containing medium
(Fig. 2C). Similarly, when inoculated on glucose medium that
typically favors swarming motility by P. aeruginosa, none of
these mutants were able to swarm (data not shown), indicating
a general defect in swarming for these mutant strains, likely
due to impaired rhamnolipid surfactant production (24, 44).
Together, these data suggest that swarm repression mediated
by arginine is dependent on the synthesis of HHQ but not PQS
or the products of the Las or Rhl QS systems.

HHQ cross-complementation restores swarm repression by
arginine. Our genetic data indicated a role for HHQ in re-
pressing swarming motility on arginine. Previous work demon-
strated that PQS can be transferred via outer membrane ves-
icles (OMV) (30) or secreted (6) by P. aeruginosa. HHQ has
also been shown to be secreted (12). We exploited these facts
to test the hypothesis that HHQ mediates swarm repression on
arginine medium by performing cross-complementation as-
says. In these experiments, the two test strains were mixed in a
1:1 ratio prior to inoculation on the arginine-containing swarm
plate.

In mixtures where HHQ is produced by at least one of the
two strains (e.g., WT versus the �pqsA mutant, the �pqsA
mutant versus the �pqsH mutant), swarming motility was re-
pressed, but not when both lacked the ability to synthesize
HHQ (e.g., the �pqsA mutant versus the �pqsB mutant, the
�pqsB mutant versus the �pqsD mutant) (Table 2). As a con-
trol, we also “self-crossed” mutants and showed that strains
lacking HHQ production (e.g., the �pqsA mutant versus the
�pqsA mutant, the �pqsR mutant versus the �pqsR mutant)
swarmed, while strains capable of HHQ production (e.g., WT
versus WT, the �pqsH mutant versus the �pqsH mutant) did
not swarm on arginine medium (Table 2). These results imply
that HHQ can be transferred between cells to repress swarm-
ing motility, and furthermore, these findings are consistent
with the model that HHQ rather than PQS represses swarming
motility.

Exogenous HHQ, but not PQS, represses swarming motility
on arginine. The combination of our genetic and cross-com-
plementation data above suggested a role for HHQ, but not
PQS, in mediating swarm repression on arginine medium. To
explore this hypothesis further, we added exogenous, chemi-
cally synthesized and purified HHQ or PQS (both at 0.5 �M)
to assess their effects on swarming motility. As a control, we
added equal volumes of DMSO, which was used to solubilize
these compounds. While HHQ was effective in repressing
swarming motility by the �pqs mutants, neither PQS nor
DMSO repressed swarming by these same mutants (Table 3).
In contrast, the �pqsR mutant demonstrated swarming motility
regardless of HHQ or PQS supplementation to the arginine
medium (Table 3).

We also wanted to explore whether c-di-GMP- and HHQ-
mediated repression of swarming motility comprise a single
regulatory pathway. To begin to address this question, we per-
formed swarming motility assays by mixing the WT and the
�sadC �roeA double mutant; this mixture of strains was still
capable of swarming (data not shown). Furthermore, contrary
to the �pqs mutants’ responses described above, the �sadC
�roeA double mutant produced a robust swarm even when
exogenous HHQ or PQS was added to the medium (Table 3).

Taken together, these results suggest that both HHQ and
the PqsR protein contribute to the repression of swarming
motility on arginine medium. Furthermore, our data suggest

TABLE 2. Swarm repression is mediated by a transferrable signal

Strain

Swarming phenotypea

WT �pqsA
mutant

�pqsB
mutant

�pqsD
mutant

�pqsE
mutant

�pqsH
mutant

�pqsR
mutant

�phnAB
mutant

WT � � � � � � � �
�lasR mutant � � � � � � � �
rhlR::tetR mutant � � � � � � � �
�lasR rhlR::tetR mutant � � � � � � � �
�pqsA mutant � 
 
 
 � � 
 

�pqsB mutant � 
 
 
 � � 
 

�pqsD mutant � 
 
 
 � � 
 

�pqsE mutant � � � � � � 
 �
�pqsH mutant � � � � � � 
 

�pqsR mutant � 
 
 
 
 
 
 

�phnAB mutant � 
 
 
 � � 
 


a �, negative swarming phenotype; 
, positive swarming phenotype. Phenotypes were scored based on observed tendril formation on at least six replicate plates.

TABLE 3. Swarming is repressed by the addition of
exogenous HHQ

Strain
Swarming phenotypea

DMSO HHQ PQS

WT � � �
�sadC �roeA mutant 

 

 


�pqsA mutant 
 � 

�pqsB mutant 
 � 

�pqsD mutant 
 � 

�phnAB mutant 
 � 

�pqsR mutant 
 
 


a �, negative swarming phenotype (e.g., no swarming); 
, positive swarming
phenotype; 

, hyperswarming phenotype. Phenotypes were scored based on
observed tendril formation on at least five replicate plates.
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that HHQ- and c-di-GMP-mediated repression of swarming
motility may be via distinct pathways, a point addressed in
more detail below.

Phenazines are downstream effectors in HHQ-mediated, ar-
ginine-dependent swarm repression. The data presented here
support a model wherein HHQ, jointly with the PqsR protein,
represses swarming motility when arginine is present. We next
sought to identify a candidate gene(s) regulated by HHQ that
might contribute to arginine-mediated swarm repression. In
particular, our emphasis was to distinguish HHQ-regulated
genes from PQS-regulated genes, as HHQ but not PQS con-
tributes to swarm repression under our experimental condi-
tions. To identify HHQ-regulated gene(s), we reanalyzed a
published set of microarray studies (11, 28) and compared the
expression profiles of three strains—the wild type and the
�pqsR and �pqsE mutants—to identify gene(s) whose expres-
sion is HHQ dependent.

Our rationale for choosing the three strains is as follows: the
wild-type strain produces both PQS and HHQ molecules and is
capable of responding to these signals. The �pqsR mutant, on
the other hand, lacks the positive regulator of the PQS oper-
ons, which negatively impacts HHQ and PQS biosynthesis and

which renders the �pqsR mutant unable to respond to these
signals. Therefore, examination of the expression profiles of
the wild type versus the �pqsR mutant should identify a com-
bination of HHQ- and PQS-regulated genes. Lastly, the inclu-
sion of the �pqsE mutant expression profile should assist in
identifying specifically HHQ-dependent genes, as the �pqsE
mutant produces both PQS and HHQ but lacks the PQS-
dependent response mediated by PqsE (18). Thus, when com-
paring the three profiles, HHQ-dependent candidates will be
similarly expressed in both the wild type and the �pqsE mutant
while inversely expressed in the �pqsR mutant.

The microarray data comparing the wild-type strain to the
�pqsE and �pqsR mutants were retrieved from the public
GEO database (GEO number GSE17147) (28) and reana-
lyzed as described in Materials and Methods. The expres-
sion of the pqs genes served as an internal control for this
data set; these genes were upregulated in both the wild-type
strain and the �pqsE mutant, but they were downregulated
in the �pqsR mutant (Fig. 3A). This finding is consistent
with published reports wherein PqsR (MvfR), together with
PQS or HHQ, can directly act as a positive regulator of the
pqsABCDE and phnAB genes (50, 56). In addition to the pqs

FIG. 3. HHQ-dependent candidate genes. (A) Reanalysis of a previous microarray data set (GEO number GSE17147) as a heat map
comparing global gene expression patterns among the wild-type strain and the �pqsE and �pqsR mutants. Genes of interest are highlighted in the
box to the right. See Materials and Methods for the statistical parameters. The key in the upper right of the panel shows the relative differential
expression corresponding to the colors in the heat map. The gene names corresponding to the names from strain P. aeruginosa PAO1 are shown,
because this is the strain studied in the original analysis (11, 28). (B) Relative expression of the phzA gene (�standard deviation [SD]; n � 6);
(C) relative expression of the phzG gene (�SD). For the plots shown in panels B and C, picograms (pg) of input DNA are plotted versus the strain
tested.
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genes, a set of phenazine biosynthesis genes (phzG, phzF,
phzD, phzC, and phzS) emerged as candidate HHQ-depen-
dent genes (Fig. 3A).

Prior to testing the downstream candidates (i.e., phz genes)
for swarming phenotypes, the expression levels of these can-
didate genes were examined via qRT-PCR. Here, we used
RNA extracted from strains grown on swarm motility plates
containing arginine, thus using the growth conditions identical
to those used for all the phenotypic assays in this report. For
this set of experiments, we examined the expression levels of
the phzA and phzG genes in the wild-type strain and the �pqsA,
�pqsH, �pqsR, and �phzA1-G1 �phzA2-G2 (�phz) (13) mu-
tants. Consistent with our microarray analysis, the wild-type
strain, producing both PQS and HHQ molecules, demon-
strated the highest level of transcripts for the phzA and phzG
genes, while the �pqsH mutant consistently showed only
�25% of the wild-type expression levels (Fig. 3B and C),
indicating that expression of phzA and phzG genes are at least
partially PQS dependent under these conditions. However, the
lack of swarming by the �pqsH mutant suggests that even this
decreased phz gene expression is still sufficient to repress
swarming.

We also examined the expression of phzA and phzG tran-
scripts in both �pqsA and �pqsR mutants, which served as
PQS/HHQ-deficient and PQS/HHQ-unresponsive controls, re-
spectively. Expression of the phzA and phzG genes was reduced

93% under these conditions for both the �pqsA and �pqsR
mutants, a finding consistent with the microarray data. Based
on the swarm phenotype of these mutants, we suggest that this
marked reduction in expression of the phz biosynthetic gene
cluster is sufficient to relieve phenazine-dependent repression
of swarming (see below). Finally, as expected, no phzA or phzG
gene transcript was detected in the �phz mutant, which is
deleted for both phz operons (13).

Thus, our microarray and qRT-PCR data support the HHQ-
dependent induction of phenazine gene expression under these
conditions and suggest that phenazines may mediate the ability
of arginine to repress swarming motility.

Phenazines repress swarming on arginine medium. Based
on our microarray and qRT-PCR data, we hypothesized that
phenazines might be required for swarm repression on argi-
nine medium. To test this hypothesis, we assessed the swarm-
ing motility of the phenazine-null �phz mutant (13) on argi-
nine medium. The �phz mutant demonstrated swarming on
arginine medium, which resembled the �pqsA mutant pheno-
type (Fig. 4A).

Proteins encoded by the phenazine biosynthesis operons
(phzA1-G1 phzA2-G2) synthesize phenazine-1-carboxylate
(PCA), which can be converted into terminal phenazines, such
as phenazine-1-carboxamide (PCN), pyocyanin (PYO), or
1-hydroxyphenazine (1-OH-PHZ) (Fig. 4B). Because the �phz
mutant lacks production of all phenazines, we sought to iden-
tify the specific phenazine(s) responsible for the repression of
swarming motility on arginine medium. We tested strains with
mutations in the genes responsible for converting PCA into the
three terminal phenazines, phzH, phzM, and phzS, for their
impacts on swarming motility. The corresponding transposon
mutants (29) in any of these three genes failed to derepress
swarming motility on arginine medium (Fig. 4C).

Consistent with the transposon mutant data, the �phzH and

�phzM deletion strains and the single-crossover (SXO) phzS
mutant were unable to swarm on the arginine medium (Fig.
4D). For reasons we do not understand, we were unable to
delete the phzS gene via allelic exchange; hence, we have used
the SXO mutant in all the studies described here. Collectively,
these results suggest that PCA, but not the PCA derivatives
PYO, 1-OH-PHZ, or PCN, is responsible for swarm repres-
sion. It is important to note that PYO is secreted at levels
similar to PCA levels (13); thus, our observations are likely not
due to different levels of the phenazines secreted. Alterna-
tively, the terminal phenazines may have redundant func-
tion(s) in repressing swarming motility on arginine medium.

To address these two hypotheses, double and triple mutants
were created: the �phzHM, �phzH phzS::sxo, �phzM phzS::sxo,
and �phzHM phzS::sxo mutants. As with the swarm phenotypes
of the single mutants highlighted in Fig. 4D, double and triple
mutants perturbed for terminal phenazine biosynthesis were
all still repressed for swarming on arginine medium (Fig. 4E).
In sum, the data presented in Fig. 4 support the hypothesis that
PCA is responsible for repressing swarm motility on arginine
medium.

Cross-complementation of phenazines restore swarm re-
pression by arginine. Because the lack of phenazines dere-
presses swarming motility on arginine medium (Fig. 4A), the
reintroduction of phenazines should repress swarming motility.
Phenazines are redox-active compounds that are secreted by P.
aeruginosa into the extracellular milieu (39, 51). Thus, we

FIG. 4. Phenazine-1-carboxylate (PCA) represses swarming motil-
ity. (A) Representative swarm phenotypes of the wild type (WT) and
the �pqsA and �phzA1-G1 �phzA2-G2 (�phz) mutants. (B) Simplified
scheme of the phenazine biosynthesis in P. aeruginosa PA14. Genes
involved are indicated above the arrows, and known phenazines pro-
duced by this organism are shown. (C) Representative swarm pheno-
types of the phzH::Tn, phzM::Tn, and phzS::Tn mutants; (D) represen-
tative swarm phenotypes of the single mutants: �phzH, �phzM, and
phzS::sxo mutants; (E) representative swarm phenotypes of double and
triple mutants involved in the synthesis of terminal phenazines:
�phzHM, �phzH phzS::sxo, �phzM phzS::sxo, and �phzHM phzS::sxo
mutants.
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asked if phenazines provided in trans from other strains could
repress swarm motility in a �phz mutant, akin to the experi-
ments described above wherein HHQ is provided in trans to
the �pqs mutants.

We performed the previously described cross-complemen-
tation experiment wherein the �phz mutant was mixed with
other strains in a 1:1 ratio. When the mixture lacked a phen-
azine-producing strain (e.g., �pqsA, -B, -D, and -R and
�phnAB mutants), swarming motility was observed, whereas
the inclusion of a phenazine-producing strain (e.g., the wild-
type strain or the �pqsH mutant) repressed swarming motility
on arginine medium (Fig. 5A and Table 4). Thus, it appears
phenazines can be transferred between cells to repress swarm-
ing motility on arginine medium. Furthermore, the observation
that the �lasR rhlR::tetR double mutant can repress swarming
by the �phz strain (Fig. 5A) suggests that strains lacking the
Las and Rhl quorum-sensing systems still produce at least
some phenazines.

PCA represses swarming on arginine medium. Data pre-
sented in Fig. 4 and 5A suggest that PCA, and not terminal
phenazines, may be important in repressing swarming motility
on arginine medium. To directly address this hypothesis, chem-
ically synthesized PCA (100 �M; Princeton BioSciences,
Princeton, NJ) was added exogenously to the arginine swarm
medium. The addition of PCA was sufficient to repress the
swarming motility of the �phz mutant on arginine medium
(Fig. 5B).

The data presented thus far are consistent with a simple
model wherein HHQ is required for PCA production, and
PCA in turn represses swarming motility. There are two pre-
dictions that grow from this simple model. First, the addition of
HHQ to a mutant blocked in PCA production should no lon-
ger repress swarming motility. Second, the addition of PCA to
a mutant lacking HHQ should still repress swarming motility.
To our surprise, neither of these predictions was borne out.

First, the addition of 0.5 �M HHQ to the �phz mutant still
repressed swarming motility despite the inability of this mutant
to produce PCA (Fig. 5C). Furthermore, the �pqsA mutant
(which is unable to produce HHQ) still swarmed upon the
addition of 100 �M PCA (Fig. 5D). Combined, these data
suggest that there may be an HHQ-dependent, PCA-indepen-
dent regulatory pathway for repressing swarming motility on
arginine also operating in this microbe, indicating a complex
mechanism of swarming regulation.

Mutations in the pqsA or phz genes do not alter pools of
c-di-GMP. Our group has previously shown a role for c-di-
GMP in regulating group behaviors, including swarming mo-
tility (25, 32, 33). It is possible that the swarming motility
phenotype we observed in both the �pqs and �phz mutants on
the arginine medium can be attributed to a reduction in their
intracellular c-di-GMP levels. To address this issue, we quan-
tified and compared the intracellular c-di-GMP concentrations
among the wild-type strain and the �pqsA and �phz mutants
via a previously described LC-tandem mass spectrometry (LC-
MS/MS) method (33, 34).

Quantification of the intracellular c-di-GMP pool demon-
strated comparable c-di-GMP levels in the three strains (Fig.
6), with a small but statistically significant increase in the c-di-
GMP level in the �pqsA mutant compared to that in the
wild-type strain. There was no significant difference between
the wild-type strain and the �phz mutant. Therefore, our data
suggest that derepression of swarming motility in the �pqsA
and �phz mutants is independent of a decrease in the cellular
level of c-di-GMP.

DISCUSSION

In this report, we sought to study the regulation of swarming
motility in Pseudomonas aeruginosa. We exploited arginine-
supplemented swarm medium, which represses swarming, to
perform a transposon mutagenesis screen to identify mutants
derepressed for swarming motility, and a candidate pqsA::Tn
mutant was identified. Subsequent genetic analyses demon-
strated a role for HHQ in repression of swarming motility in
response to arginine. Combined microarray reanalysis, qRT-
PCR, and mutational studies indicated that PCA is one can-

TABLE 4. Swarming by the �phzA1-G1 �phzA2-G2 mutant can be
repressed by PCA-producing strains

Strain
Swarming phenotype by

the �phzA1-G1
�phzA2-G2 mutant

WT .............................................................................................�
�lasR mutant ............................................................................�
�rhlR mutant ............................................................................�
�lasR �rhlR mutant .................................................................�
�pqsA mutant ...........................................................................

�pqsB mutant ...........................................................................

�pqsD mutant ...........................................................................

�pqsE mutant ...........................................................................�
�pqsH mutant ...........................................................................�
�pqsR mutant ...........................................................................

�phnAB mutant........................................................................


a �, negative swarming phenotype (e.g., no swarming); 
, positive swarming
phenotype. Phenotypes were scored based on observed tendril formation on at
least five replicate plates.

FIG. 5. PCA-dependent and -independent swarm repression.
(A) Representative swarm phenotypes when the �phzA1-G1
�phzA2-G2 (�phz) mutant is coinoculated with other mutants (mutant
genotype specified). Also see Table 4. (B) Representative swarm phe-
notypes of the wild-type strain and the �phzA1-G1 �phzA2-G2 (�phz)
mutant with or without exogenous 100 �M PCA; (C) representative
swarm phenotypes of the �phz mutant with or without exogenous 0.5
�M HHQ; (D) representative swarm phenotypes of the �pqsA mutant
with or without exogenous 100 �M PCA.

VOL. 193, 2011 HHQ-DEPENDENT GROUP BEHAVIOR 6777

  

http://jb.asm.org/


didate for an HHQ-dependent downstream regulator of swarm
repression. Previously published studies support the possibility
that HHQ, together with PqsR, likely directly positively regu-
lates the expression of the phenazine biosynthetic genes (56).
However, the mechanism by which PCA regulates swarming
remains to be identified. Furthermore, our data also support
the existence of an HHQ-dependent, PCA-independent path-
way for repression of swarming motility. Finally, our data in-
dicate that HHQ/PCA-mediated swarm repression is c-di-
GMP independent. A model summarizing these findings is
shown in Fig. 7.

Identification of HHQ-dependent downstream targets was
achieved by reanalyzing a previous microarray experiment
(GEO number GSE17147). We note that the strains used for
this microarray experiment were cultured in LB medium, and
their RNA was extracted at OD600s of 2.5 (wild type and the
�pqsR mutant) and 3.0 (the �pqsE mutant) (11, 28). These
conditions are different from our swarm experimental condi-
tions (M8 medium, incubated �24 h). Therefore, we verified
the expression of the microarray-derived candidate phz genes
(phzA and phzG) using total RNA extracted from cells scraped
from swarm agar plates. The �pqsH mutant, which is not ca-
pable of swarming motility on arginine medium, showed only
25% of the wild-type level for phz gene expression. Because the
�pqsH mutant lacks the monooxygenase for HHQ-to-PQS
conversion (12, 46), the remaining expression of the phz genes
can be attributed to HHQ, and this residual level of phz gene
expression is apparently sufficient to maintain repression of
swarming motility under these conditions. Mutants that either
fail to produce HHQ (the �pqsA mutant) or cannot respond to
HHQ (the �pqsR mutant) showed very low relative expression
of the phz genes compared to that of the wild type. Therefore,
we propose that while both PQS and HHQ contribute to full
expression of the phz genes, the HHQ-mediated expression of
these genes is essential for the observed swarming phenotype.
And although not explored here, we recognize that other quin-
olone molecules are produced via HHQ, such as 4Q-N-oxides
(12, 15, 43, 52), which may also contribute to the expression of
phz genes and/or repressing swarming motility on arginine.
Deducing the effects of other quinolone molecules will be a
topic for future investigation.

Importantly, we note that the genes in both phz operons
share highly identical sequences (
97%) at the DNA level.
Therefore, while our expression data likely reflect the sum of
the expression of the two sets of phz genes (phzA1-G1 and
phzA2-G2), it is possible that the two phz operons differentially
contribute to repression of swarming. For example, Gallagher
et al. (18) showed differential expression between phz1 and
phz2 expression, with phz2 expressed independently of PQS
and the PqsE protein, whereas phz1 expression was depen-
dent on both. Based on this published work and our studies,
we hypothesize that PqsR/HHQ may regulate the phz2 gene
cluster.

Proteins encoded by the two phz operons synthesize the
phenazine PCA. PCA is then converted to any of the three
terminal phenazines (1-OH-PHZ, PCN, and PYO) by the ac-
tivities of the PhzH, PhzM, and/or PhzS proteins (Fig. 4B).
Similar to QS signals, phenazines are implicated in regulatory
roles, such as impacting gene expression (13) and modulating
group behaviors (14, 41). In fact, Ramos et al. (41) recently
showed that the �phz mutant was a hyperswarmer on a mini-
mal glucose medium and, furthermore, that the addition of 100
�M exogenous PCA could partially repress the hyperswarming
phenotype of this mutant. Our work presented here is consis-
tent with these findings. Interestingly, the �phz mutant showed
a hyperswarming phenotype compared to the wild type on
glucose medium (41) (data not shown) as well as on arginine
medium (Fig. 4), indicating that phenazines like PCA may
modulate swarming motility in a number of environments. We
are currently focused on identifying the potential target(s) of
PCA important for controlling swarming motility.

With regard to the �sadC �roeA mutant, we previously
showed that this double mutant is a hyperswarmer with a
decreased global pool of c-di-GMP (33); therefore, it was pos-
sible that the HHQ-mediated swarm repression was due to a
reduction in intracellular c-di-GMP levels. However, our data
suggest that HHQ-dependent regulation and c-di-GMP-de-
pendent regulation of swarm motility define distinct pathways
(Fig. 6 and 7), as global c-di-GMP pools of both �pqsA and
�phz mutants show levels that are similar to or higher than
those of the wild-type strain. Meanwhile, we see no consistent

FIG. 6. Mutations in PQS and phenazine biosynthesis do not re-
duce c-di-GMP levels. Quantification of the global intracellular pool of
c-di-GMP for the wild-type strain and the �pqsA and �phz mutants
measured via liquid chromatography-tandem mass spectrometry (LC-
MS/MS) (�SD; n � 6). *, P � 0.03; NS, not statistically significant.

FIG. 7. Proposed model for swarming motility on arginine me-
dium. The repression of swarming motility by arginine requires func-
tional diguanylate cyclases (DGCs, SadC, and RoeA) as well as PqsR
and HHQ (solid lines and arrows). A distinct HHQ-dependent but
PCA-independent pathway is also predicted (dotted lines and arrows).
Arrows and lines indicate genetic relationships only.
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or significant changes in phz gene expression in the wild type
versus the �sadC �roeA double mutant (data not shown). In
sum, we believe our study supplements the growing literature
demonstrating signaling and regulatory properties of HHQ
and PCA (12, 15, 43, 52).

This report originated from investigating the effects of argi-
nine on swarming motility. Using arginine-supplemented
swarm medium, we demonstrated that HHQ, which can be
converted to PQS by the PqsH protein, is a modulator of
swarm motility. Previous studies demonstrated an �5-fold-
higher PQS production level when P. aeruginosa PA14 was
grown in a CF sputum specimen than in a standard laboratory
(MOPS) medium (38). In the synthetic CF sputum medium
(SCFM) described by Palmer and colleagues (37), P. aerugi-
nosa PA14 also produced �4-fold more PQS than in MOPS
medium (37, 38). Thus, HHQ levels may be higher in the CF
lung or CF-like environmental conditions, thereby contributing
to the repression of swarm motility. Furthermore, phenazine
levels were also shown to be elevated in P. aeruginosa grown in
SCFM (37, 38), which, based on our findings, would likely
repress swarm motility. Arginine is present in the CF lung at
�0.3 mM (37); therefore, the arginine-dependent, HHQ- and
phenazine-mediated repression of swarming motility may in
part explain why P. aeruginosa in the CF lung might favor
biofilm formation over swarming motility.
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