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SUMMARY

The maintenance of genomic stability relies on the
spindle assembly checkpoint (SAC), which ensures
accurate chromosome segregation by delaying the
onset of anaphase until all chromosomes are prop-
erly bioriented and attached to the mitotic spindle.
BUB1 and BUBR1 kinases are central for this pro-
cess and by interacting with Blinkin, link the SAC
with the kinetochore, the macromolecular assembly
that connects microtubules with centromeric DNA.
Here, we identify the Blinkin motif critical for interac-
tion with BUBR1, define the stoichiometry and
affinity of the interaction, and present a 2.2 Å resolu-
tion crystal structure of the complex. The structure
defines an unanticipated BUBR1 region responsible
for the interaction and reveals a novel Blinkin motif
that undergoes a disorder-to-order transition upon
ligand binding. We also show that substitution of
several BUBR1 residues engaged in binding Blinkin
leads to defects in the SAC, thus providing the first
molecular details of the recognition mechanism
underlying kinetochore-SAC signaling.

INTRODUCTION

The spindle assembly checkpoint (SAC) is the evolutionarily

conserved and essential self-monitoring system of the eukary-

otic cell cycle, which prevents defects in the segregation of sister

chromatids during mitosis by triggering anaphase delay in

response to kinetochores incorrectly or not attached to the

mitotic spindle. The multidomain protein kinase BUBR1 and its

paralog BUB1 are central components of the SAC. BUBR1 forms

part of the mitotic checkpoint complex (MCC) that inhibits the

anaphase-promoting complex or cyclosome (APC/C)E3 ubiqui-

tin ligase activity toward cyclin B1 and securin (Tang et al.,

2001; Sudakin et al., 2001; Nilsson et al., 2008). BUBR1 also
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associates with unattached/incorrectly attached kinetochores

and plays an important role in kinetochore microtubule interac-

tions (Lampson and Kapoor, 2005; Elowe, 2011).

The kinetochore constitutes an essential multiprotein complex

that assembles on mitotic or meiotic centromeres. This large

macromolecular assembly plays a crucial role in chromosome

segregation and mediates the physical contact of centromeric

DNA with microtubules (Przewloka and Glover, 2009). Human

Blinkin (also often referred to as KNL1, Spc105, AF15Q14,

and CASC5) is a protein initially identified in Saccharomyces

cerevisiae as a budding yeast spindle pole body component

(hence the acronym Spc105) (Nekrasov et al., 2003), which in

Caenorhabditis elegans is commonly referred to as KNL1 (kinet-

ochore null phenotype 1) (Cheeseman et al., 2004) and as

Spc105R (Spc105 related) in Drosophila (Przewloka et al.,

2007). Blinkin is a central component of the KNL1/Mis12/

Ndc80 complexes (KMN) network, themultiproteinmacromolec-

ular assembly essential for the establishment of proper kineto-

chore-microtubule attachments. Human Blinkin (NCBI reference

code NP_653091.2) is a large protein (262 kDa) containing

multiple regions of predicted low structural complexity distrib-

uted throughout the sequence. Although amino acid sequence

conservation between yeast and vertebrate Blinkins is low,

conserved motif repeats (S/GILK, RRVSF, and MELT) can be

identified in most species (Nekrasov et al., 2003; Cheeseman

et al., 2004; Przewloka et al., 2007).

Blinkin functions as a molecular scaffold to dock other

proteins: its C-terminal region is the binding site of the Nsl1 and

Dsn1 components of the Mis12 complex (Cheeseman et al.,

2006; Kiyomitsu et al., 2007)while itsN-terminal region physically

interacts with the TPR domains of the SAC kinases BUB1 and

BUBR1 (Kiyomitsu et al., 2007, 2011; Bolanos-Garcia et al.,

2009; D’Arcy et al., 2010). The interaction of Blinkin with BUB1

and BUBR1 connects SAC signaling with the KMN network and

is essential for the recruitment of both multitask kinases to the

kinetochore (revised in Bolanos-Garcia and Blundell, 2011).

Moreover, depletion of Blinkin of higher organisms by RNAi

causes severe chromosomal segregation defects that resemble

phenotypes characteristic of BUB1andBUBR1protein depletion

(Kiyomitsu et al., 2007; Cheeseman et al., 2008).
00, November 9, 2011 ª2011 Elsevier Ltd All rights reserved 1691

mailto:victor@cryst.bioc.cam.ac.uk
mailto:tom@cryst.bioc.cam.ac.uk
http://dx.doi.org/10.1016/j.str.2011.09.017


Structure

Structure of BUBR1-Blinkin Complex
Although recent progress has made possible determination of

the hierarchy of interactions between kinetochore components,

definition of the principles underlying kinetochore-mitotic check-

point signaling requires the establishment of the structural basis

of this process. To this end, we identified the region critical

for interaction with BUBR1 using a yeast two-hybrid system

and defined the stoichiometry and affinity of the interaction of

the peptide corresponding to the binding region with BUBR1

by Nano-ESI MS and ITC. We then synthesized a chimeric

peptide-BUBR1 construct and characterized the complex and

chimera using 2D NMR, demonstrating that they involved equiv-

alent interactions. We crystallized and solved the structure of

human BUBR1 at 2.2 Å resolution in complex with Blinkin

peptide in the form of the chimeric protein. Finally, using stable

isogenic HeLa cell lines we show that specific interference with

the interaction between Blinkin and BUBR1 leads to defects in

the SAC and the impairment of the interaction of BUBR1 with

Cdc20.

RESULTS

Definition of the BUBR1 Binding Region from Blinkin
We first set out to define the minimal Blinkin region important

for binding BUBR1 using a yeast two-hybrid (Y2H) system

(see Supplemental Experimental Procedures available online).

BUBR1 interactions were tested through the highly stringent

Matchmaker 3 Y2H system in which positive interactions

were determined by independent activation of three reporter

genes (HIS, ADE, and MEL1) using a quadruple dropout.

BUBR157-220 was found to interact with fragments encom-

passing N-terminal Blinkin including Blinkin1-800, Blinkin1-530,

Blinkin200-400, Blinkin210-300, Blinkin225-260, and Blinkin227-250
in a manner equivalent to that of full-length protein and

BUBR157-220 (Figure 1A), confirming that these Blinkin fragments

form contacts with the TPR-containing region of BUBR1. The

fact that several positively charged residues (K212, K220,

R221, K223, and K226) are located in human Blinkin208-226 while

the C-terminal region of human BUBR157-220 is rich in acidic resi-

dues (E209, E211-215, and E218), suggested the possibility that

the positive signal detected by Y2H reported extensive electro-

static interactions. To test this hypothesis, Y2H experiments

were conducted for a Blinkin mutant where most of the basic

residues (K220, R221, K223, and Lys226) were replaced by

alanines. Selection under high-stringency conditions showed

that this mutant binds BUBR157-220 and BUBR1 full length,

thus indicating that the substituted residues are not essential

for complex formation (Figure 1A). A reciprocate Y2H experiment

where the BUBR1 residues E211, E212, E213, and E214 were

replaced by alanines rendered similar results (data not shown).

Our Y2H experiments also show that fragments of N-terminal

Blinkin flanking residues S208-K226, which are characterized

by the presence of conserved, short motifs M(D/E)([I/L)(S/T),

(S/G)ILK and RRVSF, are dispensable for the interaction. These

Blinkin motifs have been shown to be unimportant for binding

BUBR1 in the Drosophila ortholog Spc105R (Schittenhelm

et al., 2009) and in humans (Kiyomitsu et al., 2011). Furthermore,

very recently it has been shown that the Blinkin region encom-

passing residues F201 to S250 is required for binding BUBR1

and that deletion of this region impaired BUBR1 kinetochore
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localization (Kiyomitsu et al., 2011). The fact that these data

are consistent with our highly stringent quadruple dropout Y2H

data and the detailed peptide mapping, physicochemical

analyses and structural information described below supports

our identification of the Blinkin fragment comprising residues

S208-K226 as the BUBR1 binding region.

Biophysical Characterization Reveals a Complex
of Moderate Affinity
We next investigated the contribution of conserved residues

of the Blinkin region S208-K226 to the interaction with

BUBR157-220 using a combination of synthetic peptides that

mimic Blinkin residues S208-K226 with size-exclusion chroma-

tography, fluorescence-based thermal shift assays, Nano-ESI

MS, ITC, and 2D NMR (Figures 1B–1D) (see also Supplemental

Experimental Procedures and Figure S1). The micromolar

binding affinity of Blinkin S208-K226 peptide for BUBR157-220
(9.3 mM ± 0.4 in 1:1 stoichiometry) reflects a relatively moderate

interaction. Nano-ESI MS and 2D NMR titration data confirmed

the 1:1 stoichiometry of the interaction. The Tm of ligand-free

BUBR157-220 estimated by fluorescence-based thermal shift

assays was 60�C. Addition of peptide increased the thermal

stability of BUBR157-220 by approximately 2�C, an observation

further confirmed by far-UV CD thermal denaturation analysis

(data not shown). Moreover, addition of the Blinkin S208-K226

peptide stabilized BUBR157-220 to such extent that good quality

HSQC spectra could be collected at 40�C for a continuous

period of 10 days (Figure 1D).

Although Y2H experiments showed that substitution of Blinkin

residues K220, R221, K223, and K226 by alanines did not affect

BUBR1 binding, inspection of the sequence context of these

residues shows they resemble a putative acetylation motif

[(K/R)(K/R)xKxGK] (Kim et al., 2006). The relevance of this class

of posttranslational modification for checkpoint signaling is sug-

gested by the observation that acetylation of BUBR1 residue

K250 blocks its ubiquitylation and degradation (Choi et al.,

2009). However, whether acetylation of these or other residues

is important for Blinkin function requires further investigation.

In summary, Nano-ESI MS analyses of synthetic peptides indi-

cate that Blinkin residues I213, F215, F218, and I219 are essen-

tial for the interaction with BUBR157-220 and that substitution of

Blinkin residues K220, K223 and K226 with alanines does not

affect BUBR1 binding.

A Chimera Accurately Mimics the Solution Structure
of the BUBR1-Blinkin Complex
Although we had previously been able to obtain a structure of

free BUBR1 (D’Arcy et al., 2010), the peptide-bound complex

proved recalcitrant to crystallization trials. However, the afore-

mentioned biochemical and biophysical characterization of

the BUBR1-Blinkin interaction provided a rational basis to

design a chimera construct, which comprised Blinkin residues

S208-K226 linked to N terminus BUBR1 via a poly(TGS) linker.

The chimera protein was expressed in Escherichia coli as

a GST protein fusion and purified using conventional affinity

chromatography conditions (see also Supplemental Experi-

mental Procedures). The monomeric status of BUBR157-220-

Blinkin208-226 was consistent with line widths in 1D 1H NMR

spectra and analytical size exclusion chromatography in which
All rights reserved



Figure 1. Mapping the BUBR1-Blinkin Interaction

(A) BUBR1 interacts with N-terminal Blinkin fragments in a Y2H assay. Strains Y187[pGBKT7-bait] and GOLD[pGADT7-target] were mated and X-a-Gal activity

assays performed on colonies grown on SD/-Ade/-His/-Leu/-Trp plates. Colony growth requires the activation of ade and his reporter genes and the blue-

producing X-a-Gal reaction requires the activation of the mel1 reporter gene to express the secreted reporter enzyme a-galactosidase.

(B) Nano-ESI MS of synthetic peptides that mimic Blinkin S208-K226 confirm the interaction while peptides harbouring site-specific substitutions indicate the

hydrophobic residues I213, F215, F218 and I219 are critical for binding BUBR1.

(C) ITC data shows the affinity of the interaction (Kd = 9 mM);DHandDS of�2.7 kcal mol-1 and�64 kcal mol-1, respectively. Saturation of BUBR157-220 with Blinkin

peptide S208-K226 was achieved when BUBR157-220 at concentration 27 mM was used to titrate against 200 mM of the peptide.

(D) An overlay of the 2D 1H-15N HSQC spectra of BUBR1-Blinkin chimera (red) and free BUBR1 after addition of up to 2 moles of Blinkin peptide to one mol of

protein. All structured amides from BUBR1 occupy an identical position in the chimera. Some extra peaks from the additional residues in the chimera are

indicated: (blue, residue number shown) residues from Blinkin, which become structured upon binding and (orange) unstructured residues from the linker and

extreme N terminus of Blinkin (see also Figure S1).
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BUBR157-220-Blinkin208-226 eluted as a single species at a

volume corresponding to 1.4 times the mass predicted for a

compact, globular monomer (data not shown). Backbone

assignment and side-chain resonances of 15N/13C N-terminal

BUBR1 in the unbound state and in complex with an unlabelled

Blinkin mimic peptide will be published elsewhere (P.J.S., E.C.,

and V.M.B-G., unpublished data).

In order to establish whether the chimeric construct repre-

sents the true conformation of the complex in solution, 15N,
13C-labeled native BUBR1 and BUBR1-Blinkin chimera were ex-

pressed for more in-depth NMR analysis. Backbone atoms of

native BUBR1 were assigned using conventional methods and

the protein titrated with Blinkin S208-K226 peptide. 1H-15N

HSQC spectra upon addition of up to 2 moles of peptide to
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one mole of protein revealed extensive shift changes in

BUBR1, the majority of which were in slow-exchange on the

NMR timescale in line with the affinity measured by ITC (Fig-

ure 1D). Importantly, comparison of the HSQC spectrum of the

bound state with that of the chimera revealed that all structured

BUBR1 signals overlay with those of the native BUBR1-Blinkin

complex (Figure 1D). A number of additional peaks are observed

in the chimera, which were shown to arise from the extra linker

and Blinkin residues S208-K226. As expected, nonrandom coil

shifts are observed for residues corresponding to the newly

formed Blinkin helix as judged by the chemical shift index (CSI)

(see also Figure S1A). Furthermore, the additional linker is char-

acteristic of an unstructured region, with random-coil chemical

shifts and reduced 1H-15N heteronuclear NOE values indicative
00, November 9, 2011 ª2011 Elsevier Ltd All rights reserved 1693



Table 1. Crystallographic Data Collection and Refinement

Statistics

X-Ray Diffraction Data

Space group C2

Unit cell: a, b, c (Å), beta (�) 124.40, 40.14, 75.39, 91.38

Resolution range (Å) 38.20–2.20 (2.30–2.20)

Rsym
a (%) 11.9 (46.5)

Completeness (%) 99.9 (100)

Number of unique reflections 19,266 (2379)

Average redundancy 8.8 (6.3)

Average intensity, < I/s(I) > 14.1 (2.9)

Wilson B-factor (Å2) 26.1

Refinement

Resolution range (Å) 38.20–2.20

Number of reflections: work/test 18,278/985

Rcryst
b (%) 19.3

Rfree
c (%) 24.7

Number of nonhydrogen atoms

Protein

Water

3046

2796

250

Model Quality

Estimated coordinate errord (Å) 0.225

Rmsd bonds (Å) 0.011

Rmsd angles (�) 1.116

Ramachandran plot analysise

(number of residues in)

Preferred regions 311

Allowed regions 4

Disallowed regions 3

Values in parentheses show the corresponding statistics in the highest

resolution shell.
aRsym = ShjI h� < I > j/S hI h, where Ih is the intensity of reflection h, and < I

> is the mean intensity of all symmetry-related reflections.
bRcryst = SkFobsj-jFcalck/SjFobsj, Fobs and Fcalc are observed and calcu-

lated structure factor amplitudes.
cRfree as forRcryst using a random subset of the data (about 5%) excluded

from the refinement.
d Estimated coordinate error based on the Rfree value as calculated by

REFMAC (CCP4, 1994).
e Calculated with PROCHECK (Laskowski et al., 1993).

Figure 2. The 2.2 Å Crystal Structure of the BUBR1-Blinkin Complex

Reveals an Unexpected Mode of Binding

(A) Superposition of the free (magenta) and Blinkin-bound TPR BUBR1 crystal

structures (orange) reveals that little conformational changes occur upon

ligand binding. A closeup of TPR2 BUBR1, where the slight conformational

changes that result from Blinkin binding are most noticeable.

(B) Surface representation of TPR BUBR1; the hydrophobic residues relevant

for the interaction of this protein with Blinkin (blue ribbon) are highlighted in red.

(C) Blinkin residues I213, F215, F218 and I219 bind a shallow hydrophobic

groove.

(D) Amino acid sequence alignment of the Blinkin BUBR1 binding region

reveals a high conservation of these residues in higher organisms. Each

molecule representation was generated with Pymol (DeLano, 2002). The

aligned sequences are from Homo sapiens (Hs); Rattus norvegicus (Rn); Mus

musculus (Mm); Pan troglodytes (Pt); Callithrix jacchus (Cj); Equus caballus

(Ec); Bos taurus (Bt); Ailuropoda melanoleuca (Am); Canis familiaris (Cf);

Oryctolagus cuniculus (Oc) and Monodelphis domestica (Md); Drosophila

melanogaster (Dm); and Saccharomyces cerevisiae (Sc).
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of elevated picosecond-timescale motion (Figure S1B) relative

to the majority of BUBR1 and the Blinkin helix. As the NMR

frequency is exquisitely sensitive to chemical environment and

local conformation, the observation that the chimera spectrum

is essentially identical to that of the native BUBR1-Blinkin com-

plex, together with the CSI and dynamics data, indicate that the

chimera construct mimics the native BUBR1-Blinkin interaction.

The Crystal Structure Reveals an Unexpected Binding
Mode
Single crystals of Blinkin208-226-BUBR157-220 were obtained in

two different conditions by conventional vapor diffusion hanging

drop methods. Crystals from one condition were of space group

C2 and diffracted to 2.2 Å. The structure of Blinkin208-226-

BUBR157-220 was solved by molecular replacement using the
1694 Structure 19, 1691–1700, November 9, 2011 ª2011 Elsevier Ltd
TPR-containing domain of human BUBR1 (PDB 2WVI) (D’Arcy

et al., 2010) with a final R factor of 19% and Rfree of 24%

(Table 1) (see also Supplemental Experimental Procedures). A

comparison of the crystal structure of BUBR1 in the ligand free

form (D’Arcy et al., 2010) and in the complex shows that

BUBR1 undergoes little conformational change upon binding

Blinkin and preserves the features characteristic of TPR motifs,

including a concave inner surface and a subtle right-handed

super-helical twist of the entire structure (Figure 2A). In the

complex, the Ca atoms of the BUBR1 residues V106, W125,

Y139, Y141, and L142 show displacements of 1.31, 1.61, 1.02,
All rights reserved



Figure 3. Blinkin Shows a Novel BUBR1 Binding Motif

(A) NMR chemical shift changes are consistent with the location of the peptide in the chimera. BUBR1-Blinkin chimera is shown as a surface representation with

chemical shift changes upon binding of Blinkin peptide to native BUBR1 indicated as a white-red ramp: white, no change/data not available; red, largest shift

change upon peptide binding. The largest changes in chemical environment are on the convex face and are consistent with the location of the peptide in the

crystal, although some shifts propagate through to the concave face (see also Figure S1).

(B) Blinkin binds a region that differs from that observed in TPR-peptide complexes of high structure similarity.

(C) Far-UV circular dichroism spectra reveal a predominantly disorder structure of Blinkin peptide S208-K226 in aqueous solutions. Gradual addition of TFE

resulted in a dramatic conformational change and the formation of a predominantly a-helical structure.
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1.42, and 0.91 Å, respectively, with respect to the unliganded

protein (Figure 2B). A shallow cavity lined by BUBR1 residues

L102, V106, Y116, F121, W125, L128, L131, Y139, Y141, and

L142 (Figure 2C) suggests that these residues contribute sig-

nificantly to the interaction with Blinkin. Electron density of the

Blinkin residues N211-G225 was clearly visible and unequivo-

cally shows that the side chains of Blinkin residues I213, F215,

F218, and I219 form part of a short a helix defined by residues

F215-T224 (Figure 2D) that runs parallel to the long axis of

BUBR1 TPR1 and TPR2. NMR data show that the minor confor-

mational changes of BUBR1 residues located relatively distant

from the protein interface observed in the crystal structure also

occur in solution (Figure 3A). It is also clear that the bound

form of TPR BUBR1 maintains its unique features including a

loop insertion in the first TPR unit that defines a shallow groove,

the insertion of a 310 helix between the second and third TPR

tandem repeats, and the noncanonical packing interactions

established between the a helices of the second TPR unit

(D’Arcy et al., 2010).

TPR BUBR1 shows the closest structural similarity to TPR

BUB1 (PDB 2WVI and 3ESL, respectively) and high structural

similarity with the TPR domains of protein phosphatase 5
Structure 19, 1691–17
(PP5), Hsp90 organizing protein (HOP) and PEX, despite little

amino acid conservation in equivalent positions. Therefore, the

similar topology suggests that BUBR1 and Blinkin may in-

teract in a mode similar to that observed in complexes

formed between TPR PP5 and a Hsp90 peptide (PDB 2BUG)

(Cliff et al., 2006); TPR HOP-Hsc70 peptide (PDB 1ELW) (Scheu-

fler et al., 2000); TPRHOP-Hsp90 peptide (PDB 1ELR) (Scheufler

et al., 2000); and TPR PEX5 in complex with a peroxisomal tar-

geting signal-1 (PTS1) peptide (PDB 1FCH) (Gatto et al., 2000).

In these examples, a central region of the concave face defined

by the TPR units forms a ‘‘cradle’’ where the peptide binds

(revised in Bolanos-Garcia and Blundell, 2011). Unexpectedly,

the BUBR1-Blinkin complex structure reveals a mode of interac-

tion that is very different from that observed in the structurally

similar TPR-peptide complexes (Figure 3B).

Several positions defining the shallow hydrophobic cavity

of BUBR1 have conserved residue types in BUB1. For example,

the BUBR1 residues V106, L128, Y139, Y141, and L142 are

substituted by hydrophobic residues in BUB1 (M53, F75, F86,

F88, and L89, respectively). However, other residues vary

greatly. For instance, BUBR1 residues E107, Y116, and W125

are substituted by K54, H63, and C72 in human BUB1,
00, November 9, 2011 ª2011 Elsevier Ltd All rights reserved 1695
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respectively (Figure S2). Such amino acid sequence variation

suggests that BUB1 recognizes Blinkin residues different from

those engaged in binding BUBR1 (Kiyomitsu et al., 2011).

Polar contacts contribute to stabilize the BUBR157-220-

Blinkin208-226 complex: salt bridges are formed between Blinkin

residue R221 and BUBR1 residues E103 and E107 while

hydrogen bonds are established between BUBR1 L131, a

residue that is located in a helix A of TPR2, with Blinkin residue

I213. Residue N133, which is located in a loop connecting

TPR2 a helices A and B, establishes a hydrogen bond with the

main chain Blinkin residue I213. Interestingly, several BUBR1

residues important for binding Blinkin (i.e., residues E107,

L128, L131, Y141, and L142) are conserved in human andmurine

BUBR1 but not in yeast or worms, suggesting that sequence

variations in the BUBR1 protein interface accounts for species

specific interactions between BUBR1 and Blinkin orthologs.

Similarly, Blinkin residues within the BUBR1 binding region are

highly conserved in a large number of higher organisms but

show more variation in flies and yeast (Figure 2D). Blinkin208-226
is disordered prior to binding as suggested by secondary struc-

ture prediction algorithms (data not shown) and demonstrated

by circular dichroism experiments (Figure 3C) (see also Supple-

mental Experimental Procedures). However, the structure

reveals that this Blinkin region undergoes a dramatic disorder-

to-order transition upon BUBR1 binding, a feature also observed

in TFE-titration experiments of Blinkin mimic peptides monitored

by circular dichroism (Figure 3C and inset).

In an attempt to relate structure with the binding affinity of

the interaction, we calculated the interfacial surface area of

the complex with PDBePISA. This interactive tool calculated

a total surface area of 9140 Å2 and 2100 Å2 for individual

BUBR157-220 and Blinkin208-226, respectively, and an interface

area of 1150 Å2 for the complex. In the context of a recent clas-

sification (Kastritis et al., 2011) of protein-protein complexes with

Kd ranging between 10�5 and 10�14 M and our ITC data, we

conclude that the Blinkin-BUBR1 interaction is one of medium

affinity. Such affinity correlates well not only with the Kd deter-

mined for other complexes of a similar interface area that

undergo minor conformational changes upon ligand binding

(Kastritis et al., 2011) but also with the transient nature of the

SAC response in cells with an unsatisfied mitotic checkpoint.

The interaction between BUBR1 and Blinkin Is Required
for a Functional SAC
Previous studies have demonstrated that Blinkin is required for

a functional mitotic checkpoint potentially through the recruit-

ment of BUB1 and BUBR1 to the kinetochore (Kiyomitsu et al.,

2007, 2011). The studies, which were largely based on truncated

constructs for both in vivo localization experiments and the yeast

two-hybrid system, did not discriminate between a requirement

of BUB1-Blinkin interaction and that of BUBR1-Blinkin. The

structure of Blinkin-BUBR1 complex allows a closer inspection

of the role of specific BUBR1 residues for the interaction and

the impact of residues substitution in SAC signaling.

To this effect we created stable isogenic HeLa cells lines

expressing siRNA resistant Venus-BUBR1 WT, Venus BUBR1

L128A/L131A and Venus BUBR1 Y141A/L142A. Analysis of the

structure of the Blinkin-BUBR1 complex suggests that the two

double mutants are likely to disrupt the interaction with Blinkin.
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As a control we included the KEN box of BUBR1 where all three

residues were mutated to alanine (Venus BUBR1 KEN26AAA)

known to have a defective checkpoint (Sczaniecka et al., 2008;

Malureanu et al., 2009).

The cell lines were synchronized using a double thymidine

arrest protocol. Endogenous BUBR1 was depleted for 48 hr

and then exogenously induced for 24 hr before filming the cells

using time-lapse microscopy in the presence of 100 nM nocoda-

zole (Figures 4A–4D; Movies S1–S4). Control cells were arrested

under these conditions while BUBR1 RNAi-treated cells failed to

arrest. Importantly, BUBR1 arrest could be restored by express-

ing Venus-BUBR1 WT but not Venus-BUBR1 KEN26AAA, thus

demonstrating the effectiveness of the complementation assay

(Figure 4D; Movies S1 and S2). The arrest induced by comple-

mentation with Venus-BUBR1 WT is not as strong as that of

control-treated cells indicating that full rescue could not been

achieved. This feature may be the result of a lower expression

level of exogenous BUBR1, interference caused by the protein

tag or both. However, the clear difference between Venus-

BUBR1 WT and Venus-BUBR1 KEN26AAA allowed us to

address the role of the BUBR1-Blinkin interaction in the SAC.

Both BUBR1 double mutants L128A/L131A and BUBR1

Y141A/L142A showed the expected cytoplasmic localization

before cells entered into prometaphase and kinetochore accu-

mulation in prometaphase. Importantly, both L128A/L131A and

Y141A/L142A point mutants failed to mount a SAC arrest to the

same extent as BUBR1 WT, thus suggesting these residues

playan important role in theBUBR1-Blinkin interaction (Figure4D;

Movies 3 and 4), a notion that is supported by analytical gel filtra-

tion chromatography coupled to mass spectrometry, NMR data,

and two-hybrid assays (Figures 3B–3D). To rule out the possibility

that a defective SAC was an artifact resulting from protein mis-

folding, both L128A/L131A and Y141A/L142A double mutants

were overexpressed in E. coli and characterized by analytical

gel filtration, far-UV CD and NMR. The analyses confirmed that

the twomutants exhibit a native,monomeric state and secondary

structure and thermal stability that are similar to BUBR1WT (Fig-

ureS3A). As expected, theBUBR1doublemutants L128A/L131A

and Y141A/L142A have a lower affinity for binding the Blinkin

peptide compared to the WT as revealed by analytical gel filtra-

tion (data not shown) and nano ESI MS (Figure S3B).

In particular, BUBR1 Y141A/L142A displayed an almost com-

plete lack of checkpoint, a feature that was also observed when

cells were not challenged with nocodazole (data not shown). We

set out to investigate whether the impaired SAC function of these

BUBR1mutants was related to the ability to bind Cdc20. For this,

we immunopurified each BUBR1 double mutant in the absence

of endogenous BUBR1 using GFP-Trap according to the

strategy outlined in Figure 4E. As expected, BUBR1 WT showed

binding to Cdc20, Mad2 and Blinkin while BUBR1 KEN26AAA

completely lost its interaction with Cdc20 and Mad2 (Figure 4F).

Importantly BUBR1 L128A/L131A and BUBR1 Y141A/L142A

had a diminished binding to Cdc20, Mad2 and Blinkin. The

impaired binding to these proteins is more evident in the case

of the BUBR1 Y141A/L142A mutant, an observation that is in

good agreement with our live cell analyses (Figure 4D). These

experiments reveal that disrupting the interaction between

BUBR1 and Blinkin, which results in a failure in the SAC, also

affects the binding of BUBR1 to Cdc20.
All rights reserved



Figure 4. The Interaction between BUBR1

and Blinkin Is Required for a Functional SAC

(A) Synchronization protocol for RNAi depletion of

BUBR1 and rescue with mutants. Time is shown in

days (D).

(B) Western blot for BUBR1 showing depletion of

endogenous BUBR1 and level of expression of the

different mutants (see also Figure S3).

(C) Plot showing time spent in mitosis in the pre-

sence of 100 nM nocodazole with each dot rep-

resenting a single cell analyzed by time-lapse

microscopy and bar indicating the median. Time is

scored as the time from nuclear envelope break-

down (NEBD) to time of mitotic exit and for each

condition 60 cells have been analyzed. The

statistical significance is indicated above as

determined by the Mann-Whitney test. The time

spent in mitosis in the Luciferase control is un-

derestimated as 49 out of 60 cells did not exit

mitosis during filming.

(D) Representative still images from the different

cell lines analyzed. Time is in minutes and t = 0 is at

NEBD.

(E) Synchronization protocol used for the im-

munodepletion experiment.

(F) Immunopurified BUBR1 complexes analyzed

for the presence of Blinkin, Cdc20, Mad2, and

Bub3. In the input the asterisks indicates an

unspecific band from previous probing of the blot.
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DISCUSSION

Wehave investigated the interaction of Blinkin with BUBR1 using

a variety of methods: the Y2H system, peptide binding mapping

studies, CD and ITC measurements, nano ESI MS, NMR, X-ray

crystallography, and time-lapse microscopy of BUBR1 mutants

expressed stably in HeLa cells. Our multidisciplinary approach

allowed us to identify Blinkin I213-L222 as the minimal residues

required for binding BUBR1 and to provide binding affinity data.

Moreover, when this manuscript was in preparation, a Blinkin

fragment (residues F201-S250) was reported as sufficient for

the interaction with BUBR1 and its deletion was shown to
Structure 19, 1691–1700, November 9, 2011 ª
compromise SAC function (Kiyomitsu

et al., 2011). The comparatively larger

Blinkin region thus identified is in good

agreement with our Y2H experiments, in

which reciprocal interactions were tested

under highly stringent conditions, and

our detailed biochemical, biophysical,

structural, and functional analyses of

the interaction. However, our structural

studies clarify some recent findings as

we show that Blinkin residues I213,

F215, F218, I219, R221, and L222 are

essential for the interaction with human

BUBR1 and help to define precisely

a novel BUBR1 binding motif (I-x-F-x-x-

F-I-x-R-L) as opposed to the KI motif

(KI[D/N]xxxF[L/I]xxLK, residues 212 to

223) inferred from Y2H studies of trun-

cated constructs (Kiyomitsu et al., 2011).
The structure indeed reveals that the interaction of

Blinkin208-226 with BUBR157-220 is derived from complementary

hydrophobic interfaces implicating Blinkin residues I213, F215,

F218, I219, and L222. Blinkin residue R221 contributes to the

interaction through the establishment of salt bridges with

BUBR1 residues E103 and E107 while other Blinkin residues

that show good conservation in higher organisms including

those that form part of the KI motif K212, D214, N216, and

D217, are not engaged in binding BUBR1. Previous Y2H exper-

iments indicated that single substitution of BUBR1 residues

P119, R130 and S157 as well as those defining the GIG motif

(i.e., G146 and G148) by alanine does not have an effect on the
2011 Elsevier Ltd All rights reserved 1697
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interaction with Blinkin and that a similar substitution of residues

L126, E161, and R165 weakened the interaction (D’Arcy et al.,

2010). The structure shows that BUBR1 residue L126 is located

in close proximity to residues W125 and L128, which contribute

to define the shallow groove whereas the GIG motif is mapped

onto the loop region linking TPR2 and TPR3. Thus, substitution

of residue L126 by alanine and double and triple substitutions

of residues defining the GIG motif are expected to disrupt

the architecture of the ligand-binding site. Residues E161 and

R165 are located approximately 11 Å away from the shallow

groove described above, suggesting that substitution of these

residues with alanine most likely impaired Blinkin binding by

destabilizing interactions between TPR units. This idea is sup-

ported by the fact that two residues located in close vicinity,

W158 andY162, are engaged in stacking interactions with others

located at TPR consensus positions (D’Arcy et al., 2010).

The structure allows the mapping of residue substitutions that

have been associated with cancer. For instance, the substitution

E166D initially identified in patients with adult T cell leukemia/

lymphoma (Ohshima et al., 2000), and Y155C, a substitution

associated with mosaic-variegated aneuploidy (Suijkerbuijk

et al., 2010), both aremapped onto the third TPR unit. The distant

position of these residues relative to the protein-peptide inter-

face suggests that a similar destabilization of helix-helix contacts

may account for the deleterious outcome of these residue

substitutions.

Remarkably, the BUBR1-Blinkin structure revealed an unan-

ticipated protein-protein interface in which Blinkin interacts

with a shallow hydrophobic groove located in the convex side

of the BUBR1 helical bundle (Figure 3B). This structural feature

suggests that TPR BUBR1 might contain more than one

protein-binding site, a likely possibility considering the various

roles of this kinase in SAC signaling (Bolanos-Garcia and Blun-

dell, 2011; Elowe, 2011). In any case, the novel interface defined

by the Blinkin-BUBR1 complex expands the repertoire of

protein-protein interaction sites recognizable in a TPR motif.

Moreover, the unique mode of interaction of TPR BUBR1 with

Blinkin, the high divergence of its amino acid sequence from a

canonical TPR motif and the unique structural features of TPR

BUBR1 (and TPR BUB1) suggest that these SAC kinases repre-

sent a distinct structural class of TPR-containing proteins. More-

over, studies conducted in stable cell lines show that mutation

of BUBR1 residues defining the shallow hydrophobic grove

impaired the SAC and the incorporation of BUBR1 into check-

point complexes (Figures 4A–4F) further indicating that the inter-

action between BUBR1 and Blinkin is important for a functional

SAC. Considering that BUBR1 L128A/L131A and BUBR1

Y141A/L142A still localize to the kinetochore and that these

mutants bind the Blinkin mimic peptide with much lower affinity

than BUBR1 WT, it seems likely that multiple sites of contact

must be established between BUBR1 and Blinkin in order to

make the interaction productive and/or that additional contacts

between BUBR1 and the kinetochore may exists. For instance,

we have evidence suggesting that BUB3 can also contribute to

the interaction with Blinkin (unpublished data). We favor a model

in which BUBR1 binds Blinkin and potentially gets posttransla-

tionally modified by kinetochore localized mitotic kinases allow-

ing its incorporation into complexes with Cdc20. However, it

cannot be ruled out that Cdc20 and Blinkin share an overlapping
1698 Structure 19, 1691–1700, November 9, 2011 ª2011 Elsevier Ltd
binding site on BUBR1 and that this is the cause of the check-

point defect we observed in the aforementioned BUBR1 double

mutants. Further experiments should aim to define more pre-

cisely the causality of Blinkin and checkpoint protein binding to

BUBR1 mutants in regards to mitotic checkpoint deficiency.

Our mapping studies show that Blinkin208-226 does not require

a conformation dictated by tertiary, intramolecular interactions to

bind BUBR1. Instead, it appears that this motif undergoes an

important folding transition upon binding, analogous to that

described by Dyson and Wright (2002). We show that a hydro-

phobic environment, achieved experimentally by addition of

2,2,2-trifluoroethanol to the aqueous buffer solution, promotes

a helix formation of this peptide (Figure 3C), which suggests

that in vivo, binding of this fragment is coupledwith a helix forma-

tion and the recognition of a specific hydrophobic surface in

BUBR157-220. Furthermore, it is likely that upon BUB1 and

BUBR1 binding N-terminal Blinkin undergoes conformational

changes that may affect its interaction with other ligands. In any

case, the biophysical evidence derived from binding mapping

studies of Blinkin-mimic synthetic peptides bearing site-specific

substitutions together with the characterization in vivo of BUBR1

site-specific mutants and atomic details of the mode of interac-

tion prompt us to suggest that complex formation underlie a

sequential zipper or Velcro mechanism in which Blinkin residues

I213, F215, F218, and I219 dock into the BUBR1 pockets before

the residue R221 establishes a salt bridge with BUBR1 E107. An

important implication of such a sequential zipper or Velcromech-

anism is that cooperative interactions may lead to increased

specificity and more sensitive regulation and might occur in a

similar mode to that observed in other signaling systems, such

as ligase IV-Xrcc4 and BRCA2-Rad51 complexes (Blundell

et al., 2002; Ochi et al., 2010; Bolanos-Garcia et al., 2011).

Although fly and yeast Blinkin orthologs show a greater amino

acid sequence divergence than higher organisms, it is expected

that features relevant for the interaction with SAC kinases are

conserved. Indeed, the fly Blinkin ortholog Spc105R, which

seems to have diverged faster than other invertebrates (Schitten-

helmet al., 2009), contains a putative BUBR1bindingmotif that is

defined by the residues K202 to L214 (Figure 2D).

The crystal structure of TPR BUB1 from budding yeast reveals

that the flexible C terminus of this domain (including residues

F222, I223, F226, and L227 in helix 10) folds back to form a

hydrophobic core with residues in helices 3, 4 and 5 (I93,

W111, Y114, and Y132) (Bolanos-Garcia et al., 2009). Interest-

ingly, this is remarkably similar to the hydrophobic cluster we

observe in the BUBR1-Blinkin complex (Figure 5A). Moreover,

the high structure conservation between TPR BUB1 and TPR

BUBR1 suggests that conserved hydrophobic residues in the

Blinkin region reported recently to bind human BUB1 (i.e., resi-

dues M151-N200) (Kiyomitsu et al., 2011) may define a similar

binding motif (I177xT179xxF182L183xxL186) and mode of interac-

tion as that of BUBR1-Blinkin (Figure 4B). If true, it will be impor-

tant to establish how subtle variations of the residues lining the

shallow hydrophobic grooves of BUB1 and BUBR1 contribute

to dictate specificity to the interaction.

Although the crystal structure of the BUBR1-Blinkin complex

shows that the distal, extended N-terminal and C-terminal resi-

dues of the S208-K226 Blinkin fragment are not required to

interact with the bound BUBR157-220 domain, the length of this
All rights reserved



Figure 5. BUB1 andBlinkin/KNL1/Spc105 Complexes Seem to Show

a Similar Mode of Interaction

(A) Superposition of the crystal structures of yeast BUB1 and BUBR1-Blinkin

showing that the intermolecular interactions observed in the former molecule

occur in a similar fashion as those defining the BUBR1-Blinkin complex.

(B) Structure model of human TPR BUB1 (blue) in complex with a putative

Blinkin/KNL1 BUB1 binding motif residues E172-H189, predicts that hydro-

phobic residues I177, F182, L183, and L186 (shown in stick representation)

and possibly T179 (not shown) play an important role in the interaction.

Figure 6. Functional Implications of the BUB1/BUBR1-Blinkin Inter-

action

Binding to the kinetochore stimulates BUBR1 kinase activity, which results

in prolonged mitotic arrest. Blinkin N-terminal residues defining the

I177xTxxFLxxL186 motif are predicted to constitute a putative BUB1 binding

site. The conserved Blinkin motif I213xFxxFIxRL222 is responsible of binding

BUBR1 in a process that involves important disorder to order transitions. Thus,

local conformational changes upon BUB1 and/or BUBR1 binding (blue arrows)

are likely to affect other interactions involving this Blinkin region. For instance,

N-terminal Blinkin contains a conserved motif that binds protein phosphatase

1 g (PP1 g), an interaction that is required for the targeting of PP1 to the outer

kinetochore. TheBlinkin-PP1 g interaction is disrupted by Aurora B-dependent

phosphorylation of Blinkin, which targets residues of two conserved motifs

(S/GILK) and (RVSF). The diversity of key protein-protein interactionsmediated

by Blinkin evidences the complexity of the molecular mechanisms mediating

kinetochore-mitotic checkpoint signaling.
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linker and the need to nucleate folding during binding would

allow unbound flexible regions to be recognized by specific

kinases and/or phosphatases (Figure 6). The observation that

graded levels of microtubule-binding activity arise from different

phosphorylation states of components of the KMN network,

including Blinkin (Welburn et al., 2010), seems to support the

notion that not only specificity but also transience can be

achieved by this mechanism.

In summary, the organization of the Blinkin-BUBR1 complex

provides structural details of the communication between the

SAC and the kinetochore and reveals important features of

how molecular recognition is achieved in this signaling system.

Undoubtedly, further molecular insights into how the enrichment

of BUB1 and BUBR1 in the kinetochore affects the interaction of

this multisubstrate platform with Aurora B, PP1 g, and microtu-

bules will provide important clues about the regulation of kineto-

chore-mitotic checkpoint signaling and the principles that

govern kinetochore assembly and disassembly in a spatial-

temporal framework.

EXPERIMENTAL PROCEDURES

Details of the methods and procedures used in this work can be found in the

Supplemental Experimental Procedures and include descriptions of protein
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expression, purification, and crystallization; Y2H analysis; mass spectrometry;

circular dichroism; peptide synthesis; X-ray diffraction data collection and

structure solution; NMR experiments; generation of stable HeLa cell lines;

RNAi experiments; and time-lapse microscopy.
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Structure of a Blinkin-BUBR1 Complex Reveals an
InteractionCrucial for Kinetochore-Mitotic Checkpoint
Regulation via an Unanticipated Binding Site
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The original article unfortunately included two errors: one in the affiliations and one figure correction. The affiliation for David R. Spring

was listed incorrectly, but appears correctly, above. Panel B in Figure 3 was printed without the legend ‘‘Cdc16h-Cdc26 and the

ribbon diagram representing the protein Cdc16h.’’ The revised panel is below.
Figure 3B. Blinkin Shows a Novel BUBR1 Binding Motif
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