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ABSTRACT: Chemical diversity is a widely applied approach to select structurally
diverse subsets of molecules, often with the objective of maximizing the number of
hits in biological screening. While many methods exist in the area, few systematic
comparisons using current descriptors in particular with the objective of assessing
diversity in bioactivity space have been published, and this shortage is what the
current study is aiming to address. In this work, 13 widely used molecular descriptors
were compared, including fingerprint-based descriptors (ECFP4, FCFP4, MACCS
keys), pharmacophore-based descriptors (TAT, TAD, TGT, TGD, GpiDAPH3),
shape-based descriptors (rapid overlay of chemical structures (ROCS) and principal
moments of inertia (PMI)), a connectivity-matrix-based descriptor (BCUT),
physicochemical-property-based descriptors (prop2D), and a more recently
introduced molecular descriptor type (namely, “Bayes Affinity Fingerprints”). We
assessed both the similar behavior of the descriptors in assessing the diversity of
chemical libraries, and their ability to select compounds from libraries that are diverse
in bioactivity space, which is a property of much practical relevance in screening library design. This is particularly evident, given
that many future targets to be screened are not known in advance, but that the library should still maximize the likelihood of
containing bioactive matter also for future screening campaigns. Overall, our results showed that descriptors based on atom
topology (i.e., fingerprint-based descriptors and pharmacophore-based descriptors) correlate well in rank-ordering compounds,
both within and between descriptor types. On the other hand, shape-based descriptors such as ROCS and PMI showed weak
correlation with the other descriptors utilized in this study, demonstrating significantly different behavior. We then applied eight
of the molecular descriptors compared in this study to sample a diverse subset of sample compounds (4%) from an initial
population of 2587 compounds, covering the 25 largest human activity classes from ChEMBL and measured the coverage of
activity classes by the subsets. Here, it was found that ”Bayes Affinity Fingerprints” achieved an average coverage of 92% of
activity classes. Using the descriptors ECFP4, GpiDAPH3, TGT, and random sampling, 91%, 84%, 84%, and 84% of the activity
classes were represented in the selected compounds respectively, followed by BCUT, prop2D, MACCS, and PMI (in order of
decreasing performance). In addition, we were able to show that there is no visible correlation between compound diversity in
PMI space and in bioactivity space, despite frequent utilization of PMI plots to this end. To summarize, in this work, we assessed
which descriptors select compounds with high coverage of bioactivity space, and can hence be used for diverse compound
selection for biological screening. In cases where multiple descriptors are to be used for diversity selection, this work describes
which descriptors behave complementarily, and can hence be used jointly to focus on different aspects of diversity in chemical
space.

■ INTRODUCTION

Computational methods play a pivotal role in modern drug
discovery, extending from de novo computer-aided drug-design
methods1,2 to tasks such as storing and analyzing large
combinatorial chemical libraries.3 The size of chemical space is
difficult to quantify, but there is no doubt that it is very large in
nature and, according to one estimate, there are ∼1063 organic
small molecules that could be formed of up to 30 heavy atoms.1,4

Considering the fact that likely only a very small fraction of that
space is therapeutically relevant, it is of high importance to
develop novel computational approaches that will allow efficient
exploration and effective selection of molecules that could be
tested for bioactivity against proteins of interest.5
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One concept in this direction that has gained importance in
recent decades, in particular with the advent of modern
combinatorial chemistry and high-throughput screening
(HTS), is chemical diversity. Chemical diversity, a concept
complementary to (but not just the mirror image of) chemical
similarity,6,7 is routinely utilized in library design and compound
selection to quantitatively evaluate the presence of distinct
structural features (however defined) present in chemical
libraries.8,9 To this end numerous computational methods are
currently available which allow for the selection of structural
diverse subsets that maximize the chemical space, i.e., selecting a
set of compounds with the maximum degree of structural
variation, while retaining a manageable number of molecules to
be screened or tested for novel activities.10

Chemical diversity is by no means a uniquely defined concept,
and it has been argued that it could only be measured by relevant
external criteria and thus cannot be inherently “objective”.11

Nevertheless, it has developed into a concept of high practical
relevance in the field of cheminformatics and, in particular, the
design of screening libraries, as it allows one to quantify the
similarity (or dissimilarity) of two or more chemical libraries and
rationally select chemically diverse compounds from a much
larger population of molecules. This approach is particularly
suitable when knowledge about the chemical matter active on a
protein target is limited (in this case, more-focused compound
selection would often be performed), or when the aim is to
design a general screening set that can be applied to multiple
protein targets.8

An important aspect when measuring chemical diversity is the
choice of molecular descriptors, which is used as input for
distance or similarity measures to quantify this measure. An ideal
molecular descriptor might, for example, show good correlation
with human perception of chemical diversity, so that it resembles
the human mind in decision-making processes. However, this is,
in practice, difficult to realize for at least two reasons: first,
because it is difficult to say with certainty how humans actually
assess chemical structures that are displayed in front of them,12

and, second, because there is a remarkable inconsistency in
assessment, both between chemists, and also when displaying the
same structures to a chemist repeatedly.13 Hence, resembling
human perception might actually not be a desirable goal to
pursue in the end, and quantitative measures related to the
problem at hand might be more suitable to measure the
performance of diversity assessment methods. As described in
detail later, the quantitative “external” measure that we decided
to pursue in the current work was bioactivity space coverage,
given that in many cases diversity selection of compounds aims at
assembling a library of small molecules with increased chances of
identifying hits against both current and future targets.
Recent studies have demonstrated that the use of different

descriptors could generate significantly different results when
selecting subsets of diverse molecules,14−16 underlining that the
choice of molecular descriptor clearly affects (or biases) the
perception of chemical diversity present in a library.
Furthermore, as was shown by Fergus et al., the diversity of a
library is dependent on the number of library members, and very
small libraries could give counterintuitive estimates of diversity
and should be treated with caution.17 Different diversity
assessment methods can yield vastly different results,18 depend-
ing on what type of chemical libraries they are used to analyze,
the size of the libraries, as well as the source of the molecules,
which can be compounds stemming from combinatorial
chemistry, or natural products.19

Currently, various methods are routinely being used to assess
chemical diversity, including fingerprint-based,16 shape-based,20

and pharmacophore-based methods.21 Fingerprint-based meth-
ods compare small molecules in terms of the presence or absence
of a set of substructural or fingerprint features (derived from
molecular graph representations), hereby taking into account
atom connectivity, and are widely used in virtual screening.22

Alternatively, shape-based methods encode molecular conforma-
tional information, which can be internal distances or external
molecular properties, which are then applied to compare
molecules based on those properties. Examples of such shape-
based methods are ROCS descriptors, which compare molecules
based on their molecular shapes, by assessing atom-centered
overlapping Gaussians and calculating the maximal intersection
of the volume between molecules.23 Furthermore, pharmaco-
phore-based methods compare molecular similarity in terms of
the presence or absence of pharmacophoric features (which may,
in turn, often be represented as fingerprints).21

Despite the wide usage of all the above-mentioned methods,
each descriptor focuses only on one aspect of the chemical
information available. For example, shape-based methods are
scaffold-independent, whereas pharmacophoric descriptors focus
on pharmacophoric points and do not take into account the
entire molecular surface, and structural keys encode only the
presence or absence of predefined substructural features but not
the connectivity among them. An alternative approach to
quantify molecular diversity that has been explored recently
(and also in this work) is based on “in silico” bioactivity profiles,
which maps chemical structural space into a predicted bioactivity
profile against a large number of protein targets.24 Given that
diversity in bioactivity space is often the main aim of diversity
selection projects, basing the decision of how diverse compounds
are on their bioactivity profiles might well be a purely empirical,
but still rather suitable, decision to make.
Common to all of the above descriptors, once chemical

structures have been encoded in a computer-accessible way,
selection algorithms come into play that, in principle, can be
based on any of the descriptors mentioned above.10 The
objective of thesemethods is to select subsets of compounds with
maximum structural diversity from an initial large pool of
compounds, while retaining the overall diversity of the initial
population of molecules. Because of the large size of libraries,
which can be in the order of 106 or larger in HTS campaigns,
these are mainly heuristic methods, since exhaustive enumera-
tion of all possible subsets would be computationally unfeasible
and can be categorized as25 (i) maximum dissimilarity-based
algorithms,26 (ii) clustering,27 (iii) partitioning of cell-based
approaches,28 and (iv) optimization methods.29,30 All methods
provide approaches to cherry pick diverse sets of compounds
from large libraries; however, they still depend on molecular
descriptors to compare compounds and, therefore, are affected
by the shortcomings and the behavior of the descriptor applied.
In this study, we will focus on the descriptor aspect of chemical

diversity selection, given that no comparative study using
bioactivity coverage as an objective function has been published
yet, according to the best of the authors’ knowledge, despite its
importance for selecting diverse screening subsets. To this end,
the behavior of 13 widely employed descriptor types was
assessed, which fall into four main categories, namely, finger-
prints, shape-based methods, pharmacophoric methods, and
two-dimensional (2D) properties. In addition, we utilized “Bayes
Affinity Fingerprints” as descriptors,31,24 that represent molec-
ular structures based on their in silico bioactivity profiles.
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These descriptors were applied for diversity selection across
different chemical libraries varying both in size and diversity, and
were assessed with respect to their similarities and differences in
rank-ordering compounds in diversity selection procedures by
employing the Spearman’s rank correlation coefficient. In
addition, coverage of bioactivity space was measured to assess
descriptor performance, in addition to differences in behavior.
Hence, the objective of this study is to assess correlation among
widely employed chemical descriptors across a large set of
libraries, in order to obtain a better understanding of the
situations in which these descriptors correlate and when they do
not, as well as to evaluate their ability to cover large numbers of
bioactivity classes in the selected subsets. This is of relevance for
selecting compound subsets for biological screening, in
particular, in cases where either different target families or
orphan targets will be screened.

■ MATERIALS AND METHODS
Molecular Datasets. The behavior of the different diversity

assessment and selection approaches was assessed on diverse sets
of small molecule libraries, namely, compounds generated via
Diversity-Oriented Synthesis (DOS) approaches,32 metabolites
from HMBD,33 DrugBank,34 PubChem,35 and ChEMBL.36

FN, CEH, HEB, DRS, and Da Libraries. All of the libraries from
this category stem from Diversity-Oriented Synthesis (DOS)
approaches, and they were used since they claim to contain large
chemical diversity by their very nature.37 The FN, CEH, and
HEB datasets consist of 45 nonpeptidic macrocyclic compounds
in total and are part of a larger library of such compounds
generated using a DOS approach.38 The compounds all contain
macrocyclic rings, a structural motif which is argued to be of value

for targeting the extended binding interface associated with
protein−protein interactions.39,40 The DRS library consists of 28
compounds, which were not based on any general scaffold type.
The Da library consists of 27 small molecules generated using a
branching DOS strategy.41,42 All of these DOS libraries were
synthesized with the intent of providing hits against diverse
biological targets, and, indeed, the screening of the Da and DRS
libraries has identified compounds with antibacterial activity
already.41,42

HMDB: Human Metabolome Database (HMDB). The
Human Metabolome Database33 is a comprehensive resource
of small endogenous molecule metabolites found in the human
body. For this study, HMDB version 2.5 was stored locally in
SDF format, containing 8535 compounds in total. Random
selection was applied, followed by a filtering criterion of MW <
900 Da. In total, 981 molecules were selected for the current
study.

DrugBank.DrugBank34 constitutes a comprehensive resource
for drugs and drug target information. For this study, DrugBank
version 3 was used and stored locally in SDF format. Compounds
with a molecular weight of 900 Da or less were randomly
selected, leading to a total of 1036 drugs and druglike molecules
considered in this study.

PubChem. PubChem35 is a large open repository for small
molecules and biological properties of small molecules for public
access, hosted by the U.S. National Institutes of Health (NIH).
For this study, the PubChem FTP service was accessed and 10
random subsets of compounds from the full database were
selected and downloaded locally in SDF file format. Consecutive
random selection steps were applied to select molecules. In
addition, the molecular weight was set not to exceed 950 Da,

Table 1. Molecular Descriptors Used in This Study and Software Implementation

descriptor type descriptor name implemented in description

fingerprint-based ECFP4 MOE v2011.1042 atom type, extended connectivity fingerprint, maximum
distance = 4

FCFP4 MOE v2011.1042 functional-class-based, extended connectivity fingerprint,
maximum distance = 4

MACCS MOE v2011.1042 166 predefined MDL keys (public set)

connectivity-
matrix-based

BCUT MOE v2011.1042 atomic charges, polarizabilities, H-bond donor and acceptor
abilities, and H-bonding modes of intermolecular interaction

shape-based rapid overlay of chemical structures (ROCS),
combo Tanimoto (shape and electrostatic
score)

OpenEye v3.1.248 shape-based molecular similarity method; molecules are
described by smooth Gaussian function and pharmacophore
points

PMI MOE v2011.1042 normalized principal moment-of-inertia ratios

pharmacophore-
based

GpiDAPH3 MOE v2011.1042 graph-based 3-point pharmacophore, eight atom types
computed from three atom properties (in pi system, donor,
acceptor)

TGD MOE v2011.1042 typed graph distances, atom typing (donor, acceptor, polar,
anion, cation, hydrophobe)

TAD MOE v2011.1042 typed atom distances, atom typing (donor, acceptor, polar,
anion, cation, hydrophobe)

TGT MOE v2011.1042 typed graph triangles, atom typing (donor, acceptor, polar,
anion, cation, hydrophobe)

TAT MOE v2011.1042 typed atom triangles, atom typing (donor, acceptor, polar,
anion, cation, hydrophobe)

bioactivity-based Bayes affinity fingerprints in-house-developed in silico
bioactivity prediction
model51

bioactivity model based on multicategory Bayes classifier
trained on data from ChEMBL v. 14

physicochemical-
property-based

prop2D MOE v2011.1042 physicochemical properties (such as molecular weight, atom
counts, partial charges, hydrophobicity etc.)
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leading to a total of 947 compounds selected and used in this
study. No diversity selection algorithm was applied prior to
analyzing the results, to avoid introducing descriptor bias.
ChEMBL. ChEMBL36 is a database containing binding,

functional, and ADMET information for a large number of
druglike bioactive molecules maintained by EMBL-EBI.
ChEMBL version 14 was utilized for this study, downloaded,
and installed on a local MySQL server. The 50 most-populated
human protein targets were selected (see File SI_2 in the
Supporting Information), based on the number of compounds
annotated with Ki, IC50, EC50 and Kd values equal to or better
than 1 μM. These data consisted of various types of targets
including enzymes (proteases, lyases, reductases, hydrolases, and
kinases) representing 48% of the classes, membrane receptors
(GPCRs and non-GPCRs) representing 44% of the classes and
transcription factors and transporters each representing 4% of
the classes. The target classes contained 1573 compound
associations on average, varying from 1014 to 2971 data points
(see Table S1 and Figure S2 in the Supporting Information).
Subsequently, 2587 compounds were randomly selected from
the 25 largest classes. This resulted in classes containing 103 data
points on average, with the smallest class containing 12 data
points and the largest class containing 190 data points (see Table
S2 in the Supporting Information). This dataset was utilized to
compare the performance of how molecular descriptors sample
diverse subsets of compounds and achieve protein target
coverage.
TIMBAL. TIMBAL43 is a database containing small molecules

that modulate protein−protein interactions. All compounds with
annotated Ki, IC50, EC50, or Kd values of 10 μM or better were
selected, which resulted in a total of 1995 unique compounds
across 34 target classes after standardization (as described in the
following subsection, “Library Preparation”).
Library Preparation. Molecules were standardized using

ChemAxon’s Standardizer with the options Remove salts (keep
largest fragment), Neutralize, Remove Explicit Hydrogens,
Aromatize, Mesomerize, and Tautomerize.44 Following stand-
ardization, molecules were loaded to Molecular Operating
Environment 2011.1045 (MOE) and three-dimensional (3D)
molecular conformations were calculated usingMOE,45 applying
the Rebuild 3D option, while retaining existing chirality (default
options). The standardization protocol utilized in ChemAxon’s
Standardizer is provided in File SI_3 in the Supporting
Information.
Molecular Descriptors. Twelve (12) widely employed

structural molecular descriptors and one descriptor based on
predicted bioactivity spectra, namely, the “Bayes Affinity
Fingerprints”, were utilized in this study for the representation
of molecules. Molecular descriptors are listed in Table 1 and
briefly described in the following.
(i) Fingerprint-based descriptors:

(1) MACCS keys (MOE).46 166 predefined substructural key
sets of the public subset as implemented in MOE, which
were originally designed for quicker database retrieval of
compounds with certain predefined chemical functiona-
lities.

(2) ECFP4 and FCFP4 (MOE).47 Circular fingerprints as
implemented inMOE, where E stands for atom type and F
stands for functional class. Extended connectivity finger-
prints are derived from variation of the Morgan
algorithm,48 and this descriptor type has been shown

previously to capture much information relevant to the
bioactivity of a compound.49,50

(ii) Pharmacophore-based descriptors:

(3) GpiDAPH3 (MOE).51 Graph-based three-point pharma-
cophore employing any set of three possible atom types,
namely, “in pi system”, “donor”, and “acceptor” atom.

(4) TAD, TAT, TGD and TGT (MOE). Typed atom distances
(TAD), typed atom triangle (TAT), typed graph distances
(TGD), and typed graph triangles (TGT). Six different
atom types are possible: donor, acceptor, polar, anion,
cation, and hydrophobic.

(iii) Shape-based descriptors:

(5) ROCS (OpenEye).23,52,53 Molecular shapes are described
by smooth Gaussian function and pharmacophoric points.
“Combo Tanimoto” was used as a similarity function.

(6) PMI (MOE).54 Three principal moments of inertia (PMI)
derived from 3D structures as implemented in MOE.

(7) BCUT (MOE).55 Four-dimensional (4D) BCUT_PEOE
descriptors as implemented in MOE. BCUT descriptors
are based on atomic charges, polarizabilities, H-bond
donor, and acceptor abilities and H-bonding modes of
intermolecular interaction.

(iv) 2D descriptors:

(8) prop2D. The first 10 principal components of all 2D
physicochemical properties as implemented in MOE
(v2011.10), containing properties such as molecular
weight, atom counts, polar surface area, etc.

(v) Bayes Af f inity Fingerprints:56

In silico predicted bioactivity spectra of small molecules
generated using an in-house-developed bioactivity model
based on the multicategory Naıv̈e Bayesian classifier and
bioactivity data extracted from ChEMBL. Compounds are
initially described by circular molecular fingerprints and
then are subjected to a target prediction model containing
134 450 bioactive compounds that cover 477 human
protein targets. Protein targets are then ranked for each
compound based on the likelihood of being active.

DistanceMetrics. Euclidean Distances. Euclidean distances
were employed as a distance function for descriptors that assume
continuous values, namely, PMI, Bayes affinity fingerprints,
ROCS, BCUT, and 2D physicochemical descriptors. Euclidean
distances were calculated according to eq 1:57

∑

= = − + − + ··· + −

= −
=

d d q p q p q p

q p

p q q p( , ) ( , ) ( ) ( ) ( )

( )

n n

i

n

i i

1 1
2

2 2
2 2

1

2

(1)

where p and q are the descriptor vectors of two molecules
containing n dimensions.

Hamming Distance. The Hamming distance was employed
as a distance function for descriptors that take binary values (0 or
1), namely, circular, structural, and pharmacophoric fingerprint-
based methods (ECFP4, FCFP4, MACCS, TGD, TGD, TAT,
TAD, GpiDAPH3). The Hamming distance, which originates
from information theory, is calculated for two equal n-length
vectors as the number of positions at which the corresponding
bits are different.58 The use of the Hamming distance was
preferred over the Tanimoto metric in this study, because the
Tanimoto metric is a normalized metric taking values between
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the intervals [0,1], while the Hamming distance is not
normalized.
For two vectors p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn), the

Hamming distance was calculated according to eq 2:

∑= || − || = | − |
=

d p qp q p q( , )
i

n

i i
1 (2)

Spearman’s Rank Correlation Coefficient. The Spear-
man’s rank correlation coefficient (ρ) was employed as the
correlation coefficient for assessing statistical dependence
between rankings obtained among molecules as a result of
applying different descriptors (each descriptor led to a unique
ranking of molecules, depending on the properties encoded by
the descriptor, which was then compared across descriptor pairs
for each dataset used).59 The Spearman’s rank correlation
coefficient can assume values in the interval [−1,1], where −1 or
1 indicates perfect positive or negative correlation, and values of
zero indicate absence of any correlation between the two
variables analyzed. The Spearman’s rank correlation coefficient
was calculated according to eq 3:

ρ =
∑ − ̅ − ̅
∑ − ̅ − ̅

x x y y

x x y y

( )( )

( ) ( )
i i i

i i i
2 2

(3)

where xi and yi were the resulted rankings obtained from the
distance matrices for each molecular descriptor used.
Principal Component Analysis (PCA). In order to obtain

visualization of the arrangement of descriptors in multidimen-
sional space, PCA was performed using the R statistical
environment (version 2.15.2)60 and the three first-principal
components were visualized using Vortex.61

Assessment of Bioactivity Coverage. The performance of
each compound diversity selection method was assessed based
on the coverage of activity classes achieved by sampling a 1%
diverse subset from the initial population of the compounds and
by counting the number of activity classes being retrieved. The
experiments were repeated three times, and the average number
of protein targets presented in each sampled set was assessed.
The descriptor-based diversity selection was performed utilizing
MOE’s function “Calculate Diverse Subset” with the option
Output limit set to 100. In the case of Bayes Affinity Fingerprints,
the approach as described by Nguyen et al.24 was applied. Not all
molecular descriptors were utilized in this step, because of high
computational cost (e.g., calculating a similarity matrix among
compounds in the PubChem dataset based on ROCS descriptors
required approximately one week on an Intel Core 2 Duo
desktop computer with 8 GB of RAM). Instead, eight
representative descriptors were used, as shown in Table 2.

■ RESULTS AND DISCUSSION

Results obtained on the overall correlation of descriptors used in
diversity assessment and averaged across all libraries are
visualized in Figure 1. (The full numerical matrix and the
matrices obtained for each library separately are provided in File
SI_1 in the Supporting Information.) The PCA visualization
performed on the matrix obtained from Spearman’s rank
correlation among molecular descriptors is presented in Figure
2, where the first three principal components explained 74% of
the accumulative variance, as shown in Figure 3, whereas ∼90%
of the variance in descriptor space is explained by the first five
principal components.

It can be seen in Figure 1 that the pharmacophore-based
descriptors TAT, TAD, TGD, and TGT show a strong
correlation with each other, with all Spearman’s rank correlation
coefficients observed being 0.74 (among TGT and TAT) or
higher, indicating very similar behavior of those descriptors in
diversity selection procedures. Accordingly, they were found to
cluster together in Figure 2. The fifth pharmacophore-based
descriptor utilized here, namely, GpiDAPH3, showed lower
correlation with the previously mentioned descriptors, with
Spearman’s rank correlation coefficients observed with the
descriptors TAD, TGD, and TGT of 0.46, 0.47, and 0.52,
respectively, with the exception being TAT, which had a
correlation coefficient with GpiDAPH3 of 0.65. This result is not
surprising, considering that both of the latter descriptors capture
pharmacophoric triangles (as opposed to TAD and TGD, which
use pharmacophore points), with GpiDAPH3 taking into
account three-point pharmacophore fingerprints calculated
from molecular graphs, and TAT taking into account atom-
typed triangles calculated from the 3D conformation of a
molecule. In addition, the pharmacophore-based GpiDAPH3
descriptor showed intermediate correlations between 0.54 and
0.67 with the fingerprint-based descriptors ECFP4 and FCFP4
and MACCS structural keys. The rest of the descriptors showed
correlations of 0.51 or lower with the pharmacophore-based
descriptors, indicating low similarity in behavior.
The fingerprint-based descriptors ECFP4 and FCFP4 showed

a Spearman’s rank correlation coefficient of 0.89 with each other,
indicating stronger correlation with each other than the
pharmacophore-derived descriptors, as is also clearly visible in

Table 2. Activity Classes Covered by Sampling a Diverse
Subset of 4% (100 Compounds) from an Initial Set of 2587
Compounds Extracted from the 25 Largest ChEMBL Human
Activity Classesa

Number of Activity Classes Sampled,
Out of 25 Classes

descriptor

% activity classes
sampled (subset size

of 25 classes),
averaged over three
attempts (relative

ranking)
1st

attempt
2nd

attempt
3rd

attempt average

Bayes Affinity
Fingerprints
(“Cut-off
30”)

92% (1st) 22 24 23 23

ECFP4 91% (2nd) 22 23 23 22.7
GpiDAPH3 84% (3rd) 21 22 21 21
TGT 84% (4th) 20 21 22 21
random
sampling

84% (5th) 21 21 19 21

BCUT 83% (6th) 21 20 21 20.7
prop2D 80% (7th) 21 21 19 20
MACCS 80% (8th) 19 20 20 20
PMI 75% (9th) 19 18 19 18.7
aUsing Bayes Affinity Fingerprints, considering only predicted protein
targets with a Bayes Score above 30, 92% of the initial activity classes
were sampled, hence outperforming all other descriptors marginally.
Using the descriptors ECFP4, GpiDAPH3, TGT, and random
sampling, 91%, 84%, 84%, and 84% of the activity classes, respectively,
were represented in the selected compounds. Random sampling
retrieved ∼84% of activity classes (averaged over three attempts),
showing similar performance on this dataset with GpiDAPH3, TGT,
and BCUT, while outperforming molecular descriptors such as
prop2D (80%), MACCS (80%), and PMI (75%).
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Figure 2. This high correlation can be explained by the fact that
both ECFP4 and FCFP4 are both derived from radial atom
connectivity, and their similar behavior has been observed before
in the context of similarity assessment.62 In addition, MACCS
structural keys have been shown to be correlated with ECFP4
and FCFP4 with a Spearman’s rank correlation coefficient of 0.69
and 0.68, respectively, which can be explained by the local nature
of both descriptor types. Rather surprisingly, the descriptors
ECFP4 and GpiDAPH3 demonstrated a Spearman’s rank
correlation of 0.62, indicating that these two types of fingerprints
demonstrate relatively similar behavior, which is more difficult to
rationalize, given that the GpiDAPH3 descriptor takes into
account graph-based pharmacophoric representations, as
opposed to 2D structural features or atom type or counts. On
the other hand, this is still lower than the correlation between
TAT and GpiDAPH3 descriptors, so the relative ordering of
descriptor pairs remains consistent with our initial expectations.
The results discussed here indicate that molecular descriptors
derived from atom topology or graph-based pharmacophoric
representations tend to behave rather similarly overall, as shown
in detail in Figures 1 and 2.
When now visiting descriptors of very different nature, we can

see that overall PMI shows Spearman’s rank correlations of 0.22
or lower with other type of descriptors, indicating very different
behavior, whereas for ROCS, the Spearman’s rank correlation
coefficient with all other descriptors was also 0.55 or lower.
ROCS and PMI also demonstrated significantly different
behavior from each other, as measured by the Spearman’s rank
correlation coefficient, which was found to be only 0.22 (see
Figures 1 and 2), even though they both capture molecular

shapes. This can be attributed to the fact that while PMI project
molecular shapes (i.e., how similar molecules are to archetypal
shapes such as spheres, disks, and rods) and are size-
independent, ROCS considers not only molecular shape by
comparing molecular shapes by overlapping Gaussian volumes,
but also chemical similarity/atom types, thus being size-
dependent. Similar differences exist for other descriptor types,
where, e.g., 2D physicochemical descriptors, such as atom
counts, molecular weight, and polar surface area, tend to increase
as the size of the molecule increases and, hence, are often
inherently size-dependent, while molecular fingerprints encode
only the presence or absence of chemical substructures, and
accordingly pay less attention to size.
As a nonstructural descriptor considered here, Bayes Affinity

Fingerprints describe molecules by their predicted bioactivity
spectra, and they showed low correlation with the rest of the
descriptors utilized in this study: Spearman’s rank correlations
with all other descriptors did not exceed 0.53 in the case of
FCFP4 and MACCS keys, and it was as low as 0.28 with
GpiDAPH3 pharmacophores.
In order to further illustrate the extent to which different

descriptors assess different aspects of chemical diversity, an
example of comparison between two molecules in the Da library
is given in Figure 4, where the ranks are shown for each
descriptor employed (lower ranks mean higher similarity,
whereas higher ranks mean lower similarity). It can be observed
that, overall, there are significant differences among ranking
positions obtained (ranks range from 3 to 27, given the library
size of 27). MACCS keys and the pharmacophore-based
descriptors TAT, TGT, TAD, and TGD showed very similar

Figure 1. Spearman’s rank correlation coefficients obtained from descriptors used in this study averaged over all included libraries. Darker colors indicate
higher Spearman’s rank correlation, whereas lighter colors indicate lower correlation. The descriptor PMI demonstrated the least correlation with any
other descriptor, indicating that the behavior of this type of descriptor is significantly different from any others included here. Overall, it can be seen that
pharmacophore-based descriptors such as TAT, TGT, TAD, and TGD show some correlation with fingerprint-based descriptors (ECFP4, FCFP4, and
MACCS, with MACCS keys also showing some correlation with other descriptor types).
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results (they all ranked the molecules within the library at similar
positions), and the fingerprint-based descriptors ECFP4 and

FCFP4 also showed very similar results, compared among
themselves (they both assigned a moderate similarity ranking).

Figure 2. Similarity of molecular descriptors in perceiving the diversity of chemical libraries visualized in PCA space. The Spearman’s rank correlations
between the descriptors were subjected to principal component analysis (PCA): ∼74% of the accumulative variance is captured in the first three
principal components shown here; therefore, descriptors located close to each other show a stronger correlation based on the Spearman’s rank-
correlation coefficient. Overall, it can be observed that two clusters of descriptors emerged that show high correlation within their groups: first, the
fingerprint-based descriptors ECFP4 and FCFP4, and, second, the pharmacophore-based descriptors TAT, TGT, TAD, and TGD. In addition, MACCS
keys and GpiDAPH3 descriptors did not show any significant correlation with other type of descriptors, nor did the descriptors BCUT, PMI, and
prop2D.

Figure 3. Scree plot of the PCA of the 13-dimensional descriptor space (compared to the 37-dimensional descriptor space in an earlier study by Bender
et al.62). The first three principal components capture 74% of the total variance, while five principal components are required to capture 90% of the total
variance. In an earlier study by Bender et al.,62 the first three components captured only 50% of the total variance, while 10 principal components were
required to capture 80% of this measure. It cannot be definitely concluded whether more variance is captured in fewer dimensions, because of more
similar behavior of descriptors or simply their lower number; however, it can be seen that a small number of dimensions already is sufficient to capture
similarities and dissimilarities of the molecular descriptors when it comes to molecular diversity assessment, as employed in this study. When compared
to the study by Bender et al.,62 the increase in the percentage of accumulative explained variance for the first five principal components is very similar
(41% here, compared to 38%), indicating that the first part of the curve is similar in both cases, albeit with a different percentage of variance, explained by
the first principal component (49% here, compared to only 24% in the study by Bender et al.62).
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However, the descriptors GpiDAPH3, ROCS, prop2D all
perceived the molecules considered to be highly dissimilar.
One possible explanation for the results observed above is that
the descriptor MACCS was originally designed for indexing
molecules and contains a small key set comprised of only 166
bits, which is the public subset (corresponding to predefined
chemical functionalities), and it therefore appeared to be unable
to distinguish well between relatively more similar molecules
(much the same as the pharmacophore-based descriptors TAT,
TGT, TAD, and TGD). However, the fingerprint-based
descriptors ECFP4 and FCFP4 do take into account fingerprint
features that are present in each molecule (independent of any
predefined keyset), and they are hence able to also identify more
subtle dissimilarities between those overall similar molecules. On
the other hand, the descriptors prop2D and ROCS take into
account substructural feature counts, molecular shape, and atom
connectivity, and hence aggregate differences among the
compounds, resulting in a perceived significance, with respect
to physicochemical properties and shape of the structures.
Hence, our findings illustrate that two molecules subjectively
perceived to be chemically similar by visual inspection could be
considered as highly similar, moderately similar, or even
extremely different, according to the descriptors used to assess
chemical diversity.
A comparison of descriptors onmultiple datasets revealed that,

although the Spearman’s rank correlations between descriptors
for larger datasets (such as PubChem, see Figure 5) resemble the

correlations between descriptors for the compounds averaged
across all libraries, analyses for particular datasets do not always
show the same trend. It can be seen that the descriptors correlate
better for the DRS dataset (see Figure 6), where the average
correlation for the DRS dataset across all descriptors was 0.53,
whereas, for the PubChem dataset, this was only 0.31 (see Figure
5). The Bayes Affinity Fingerprints show more similarity to
fingerprint-based descriptors (which could be explained by the
fact that this descriptor type was generated by a model trained on
fingerprint-based descriptors) and shape-based descriptors,
whereas PMI shows very low correlation with all other
descriptors. Some descriptors show much higher correlations
with other descriptors in the DRS dataset than either the
PubChem or the overall dataset. For example, BCUT correlates
very poorly with other descriptors (with an average correlation of
0.19) for the PubChem dataset, whereas for the DRS dataset, it
shows a higher correlation of 0.49. Similarly, ROCS correlates
poorly with other descriptors for the PubChem dataset (0.28),
whereas for the DRS dataset, the average correlation was twice as
high (0.57). These findings illustrate that the behavior of
descriptors is highly dependent on the dataset analyzed and
therefore, size and chemical composition of datasets should be
taken into account when interpreting chemical diversity.
In order to correlate our findings with previous related studies,

we compared our findings with the main results in the study
previously reported by Bender et al.,15 where PCA of the
molecular descriptor space was performed, with respect to the

Figure 4. Two molecules from the Da library that showed significant differences in ranking positions obtained from different descriptors used. These
molecules were selected from the Da library, which was shown to contain multiple molecules with antibacterial properties.41,42 Pharmacophore-based
and atom environments fingerprint descriptors showed very similar results, most likely because they encode only the presence or absence of chemical
features, but do not take into account the size and/or molecular surface of the molecules, with the exception of GpiDAPH3. On the other hand, shape-
based and 2D descriptors perceive the two molecules as significantly different, most likely because they take into consideration the entire molecular
shape, hereby perceiving larger molecules as different from smaller ones (even if they consist of similar substructures). Hence, two chemical compounds
subjectively perceived to be chemically similar by medicinal chemists could be considered as very similar, moderately similar, or even very different
according to the descriptors used to assess chemical diversity.
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Figure 5. Spearman’s rank correlation coefficient based on the overall averaged results over the PubChem library. Darker colors show higher correlation,
whereas lighter colors show lower correlation among molecular descriptors. Overall, it can be seen that the Spearman’s rank correlation pattern for the
PubChem library is very similar to the overall Spearman’s rank correlation pattern averaged over all libraries used in this study (recall Figure 1), with
fingerprint-based and pharmacophore-based descriptors showing the most correlation among each other and within their respective group.

Figure 6. Spearman’s rank correlation coefficient based on the overall averaged results over the DRS library. Darker colors show higher correlation,
whereas lighter colors show lower correlation among descriptors. It can be observed that the descriptors correlate better for the DRS dataset than for the
much larger PubChem dataset (see Figure 5): the average correlation for the DRS dataset across all descriptors was 0.53, whereas, for the PubChem
dataset, this was only 0.31.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400469u | J. Chem. Inf. Model. 2014, 54, 230−242238



similarity of molecules, with the objective being to understand
which descriptors contain orthogonal information and which
descriptors are correlated with each other. Many agreements and
disagreements were observed regarding the correlation among
the descriptors used between our PCA (Figure 2) and the PCA
conducted by Bender et al.15 First, fingerprint-based descriptors
such as ECFP and FCFP cluster together in both PCA plots, as
do the 3D pharmacophore-based descriptors TAT and TGT.
However, the pharmacophore-based descriptor GpiDAPH3 is
positioned away from other pharmacophore-based descriptors,
but closer to the fingerprint-based descriptors in the current
study, whereas, in the previous analysis by Bender et al.,15 it has
been located near other pharmacophore-based descriptors. In
addition, MACCS keys (referred to as MDL in the study by
Bender et al.15) are correlated with fingerprint-based descriptors
in our study; however, this is not the case in the study by Bender
et al.,15 where MACCS keys are more correlated to
pharmacophore-based descriptors instead. Differences observed
in this study compared to the previous study reported can be
attributed to different objectives, because, in this study, the
objective was to evaluate the correlation of molecular descriptors
based on rankings obtained from calculated distances among
compounds present in chemical libraries for diversity assessment,
instead comparing the performance of molecular descriptors in
retrieving active compounds for virtual screening assessment.
In order to assess not only similarities and dissimilarities in the

behavior of different descriptors when applied to diversity
selection but also their performance, with respect to a relevant
measure, eight out the 13 descriptors were used for diversity
selection and their performance was assessed by the coverage of
protein targets in bioactivity space. (Some methods could not be
used due to computational demands, given that the full

compound similarity matrix needed to be computed for diversity
selection using the methods employed here.) The performance
of each method was assessed based on the number of activity
classes covered by sampling a diverse subset of 4% (100
compounds) from an initial set of 2587 randomly selected
compounds covering the 25 largest ChEMBL activity classes of
human protein targets (target classes shown in Table S2 in the
Supporting Information). These 25 activity classes contain 103
data points on average and vary in size from 12 data points to 190
data points, indicating that this is an unbalanced dataset.
Results of this analysis are shown in Table 2. Bayes Affinity

Fingerprints, considering only predicted protein targets with a
Bayes score above 30 (“Cut-off 30”), sampled an average of 92%
of bioactivity classes, hence outperforming all other descriptors
marginally. Using the descriptors ECFP4, GpiDAPH3, TGT,
and random sampling, 91%, 84%, 84%, and 84% of the activity
classes, respectively, were represented in the selected com-
pounds. Random sampling retrieved ∼84% of activity classes
(averaged over three attempts), showing similar performance on
this dataset to the descriptors GpiDAPH3, TGT, and BCUT,
while outperforming molecular descriptors such as prop2D
(80%), MACCS (80%), and PMI (75%). Despite the seemingly
high performance of random sampling, it should be noted that
random selection would only yield the best results (compared to
any other method based on molecular descriptors) in the case
where all classes are of equal size by picking up the most diverse
subsets in bioactivity space. This could lead one to the
misconception that random selection is a better option than
the currently available methods used for diversity selection.
However, in more realistic situations, such as here, some
biological targets are more promiscuous than others, and hence
they can accommodate a more diverse set of compounds in their

Figure 7. Normalized PMI ratios (nPR1 and nPR2) plot of 6 out of 50 ChEMBL activity classes utilized; namely, the coagulation factor X (F10),
vascular endothelial growth factor receptor 2 (KDR), carbonic anhydrase 2 (CA2), prothrombin (F2), sodium-dependent serotonin transporter
(SLC6A4), and mitogen-activated protein kinase 14 (MAPK14). It can be seen that molecular shape diversity of chemical libraries, measured by PMI,
does not correlate with or indicate diversity of coverage in bioactivity space, as compounds binding to different protein families occupy similar space, and,
in return, compounds from different areas of PMI space are bioactive against the same protein. Hence, the authors would recommend that, although
PMI analyses give an insight into the shape properties of a chemical library, they might not be the most suitable tool to assess compound diversity in
bioactivity space.
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binding sites than others (therefore leading to “larger activity
classes” against those more promiscuous proteins). In such cases,
random selection would struggle to pick compounds from small
classes and, thus, does not seem to be the most suitable approach
to be applied for diversity selection. Diversity selection methods
based on molecular descriptors appear to be less successful in
retrieving bioactive compounds against a broad range of protein
targets, since no prior knowledge of which bits in the fingerprint
matter (and lead to bioactivity differences) is considered by these
methods. Instead, Bayes Affinity Fingerprints, which are trained
on active compounds covering a large part of chemogenomic
space, subselect compounds by taking into account known
bioactive chemistry (and modifications leading to bioactivity
changes), and thus appear to be able to achieve better protein
target coverage. Our results are consistent with our previously
reported study byNguyen et al.,24 where diversity selection based
on bioactivity spectra fingerprints outperformed commonly
employed circular fingerprint-based methods by up to 10%,
when sampling bioactive compounds.
Finally, we attempted to assess whether PMI plots, which have

frequently been used to assess the diversity of, e.g., DOS libraries,
can be used to this end, when also paying attention to bioactivity
coverage. This analysis is presented in Figure 7, as a PMI ratios
plot (nPR1 and nPR2) for 6 out of 50 ChEMBL activity classes.
It can be seen that molecular shape diversity of chemical libraries,
as measured by PMI, does not correlate or indicate a diversity of
coverage in bioactivity space, because compounds binding to
different protein families occupy similar space, and compounds
from different areas of PMI space are bioactive against the same
protein. However, one could argue that the targets from
ChEMBL represent a biased part of biological space (the space
where it has been easy to identify bioactive molecules with
traditional medicinal chemistry efforts). Therefore, a similar
analysis on 1995 compounds with annotated Ki, IC50, EC50, orKd
values of 10 μM or better from the TIMBAL database was
performed,43 which involves a database of compounds with
protein−protein inhibitory properties (see Figure S1 in the
Supporting Information). It also can be seen that, in this case,
molecular shape diversity does not correlate or indicate diversity
of coverage in bioactivity space, because the compounds have a
similar distribution to that in Figure 7. Hence, in the authors’
opinion, PMI analyses, while giving insight into the shape
properties of a chemical library, should rather not be used to
assess diversity in bioactivity space. One might find this
assumption tempting to make; however, Figure 7 illustrates the
rather small correlation between diversity in PMI space and
diversity in bioactivity space; moreover, from this illustration, it is
apparent that diversity in one space has little predictive value for
diversity in the other. In the opinion of the authors, diversity in
bioactivity spaceeven if only computationally established
would be a practically more relevant measure for assessing the
biologically relevant diversity of small molecule libraries.

■ CONCLUSION
This study aimed at assessing both the correlations between
molecular descriptors in the context of diversity assessment, as
well as their performance, with respect to covering bioactivity
space. It was found that descriptors derived from atom topology
(i.e., pharmacophore-based descriptors, such as TAT, TAD,
TGD, and TGT) and fingerprint-based descriptors (such as
ECFP4 and FCFP4) generally showed strong correlation within
each group (all with Spearman’s rank correlations of 0.74 or
higher) and between both groups (all with Spearman’s rank

correlations of 0.59 or higher). On the other hand, shape-based
descriptors such as rapid overlay of chemical structures (ROCS)
and principal moments of inertia (PMI) demonstrated behaviors
that were significantly different from each other, as measured by
the Spearman’s rank correlation coefficient, which was found to
be only 0.22. Moreover, it was observed that descriptors correlate
differently, depending on the dataset used. For example, the
average correlation of descriptors for the DRS dataset,
encompassing 28 dissimilar compounds (with multiple scaffolds
being present in the dataset), is 0.53, whereas for the much larger
and more diverse (on an absolute scale) PubChem dataset, the
average correlation reached only 0.31. Hence, overall our results
indicate that molecular descriptors differ in the way they assess
chemical diversity, depending on the diversity and size of the
datasets used, and selecting the appropriate descriptor is a
nontrivial task, which must take into account both of these
aspects. Moreover, the shape-based descriptor PMI showed no
correlation with any other type of descriptor utilized in this study,
demonstrating very different behavior from all other descriptors
employed here.
Given that diversity in bioactivity space is often the primary

objective of compound diversity selection procedures, we
furthermore benchmarked the descriptors employed here, with
respect to covering 25 bioactivity classes upon selecting 4% of
2587 compounds from a subset of ChEMBL. Here, it was found
that the Bayes Affinity Fingerprints showed the best performance
by covering 92% of bioactivity classes, hence outperforming all
other descriptors marginally. Using the descriptors ECFP4,
GpiDAPH3, TGT, and random sampling, 91%, 84%, 84%, and
84% of the activity classes, respectively, were represented in the
selected compounds, followed by BCUT, prop2D, MACCS, and
PMI (in order of decreasing performance). Random sampling
retrieved∼84% of activity classes (averaged over three attempts),
showing similar performance of this dataset to the descriptors
GpiDAPH3, TGT, and BCUT, while outperforming molecular
descriptors such as prop2D (80%), MACCS (80%), and PMI
(75%). In addition, we were able to show that there is no visible
correlation between compound diversity in PMI space and in
bioactivity space, despite frequent utilization of PMI plots to this
end.
Overall, this study assessed which descriptors are able to select

compounds with high coverage of bioactivity space, and which
can hence be used for diverse compound selection for biological
screening. It also gives guidelines as to which descriptors behave
rather collinear and which descriptors behavemore orthogonal in
diversity selection tasks. We propose that a combination of
complementary descriptors such as Bayes Affinity Fingerprints,
PMI, and prop2D be used to computationally select a diverse set
of compounds for screening purposes. Such a computational
“filter” might also add value to current endeavors of assembling
screening libraries against diverse targets, such as the European
Lead Factory,63 as well as library enhancement initiatives that are
taking place continuously in pharmaceutical companies.
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