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Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease.
Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the
past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors
that have prevented these approaches from reaching their full potential. From target validation to small-mole-
cule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully
modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which sum-
marized the lessons learnt from prior successes, we focus in this article on the specific challenges of devel-
oping PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate
overcoming them. We conclude by providing a perspective on the field and outlining four innovations that
we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs.
Introduction
Protein-protein interactions (PPIs) have long been recognized as

the key regulators of cellular pathways and networks. Devel-

oping tools to probe these interactions has led to an increased

understanding of biological systems, and PPIs have also been

targeted for drug development, due to the potential for selec-

tively interfering with specific cellular pathways (Higueruelo

et al., 2013; Mullard, 2012;Wells andMcClendon, 2007). Indeed,

several small-molecule modulators of PPIs are already in clinical

use, while others are currently being evaluated in clinical trials

(Table 1). A recent review focused on the properties of PPI inhib-

itors regarded as clinical success stories and discussed their

specific mechanisms of action (Arkin et al., 2014). PPI inhibitors

were separated into the classes of primary, secondary, and ter-

tiary structural epitopes, as well as allosteric modulators. The

future prospects for PPI-targeted drug discovery and the likeli-

hood of success was discussed in each case. However, despite

the notable successes, there have been many failures in identi-

fying PPI inhibitors, and it is clear that inhibiting PPIs with small

molecules remains a major challenge (Morelli et al., 2011; Villou-

treix et al., 2014; Zinzalla and Thurston, 2009). In this review, we

detail the specific chemical and biological challenges associated

with inhibiting PPIs using small molecules, as well as the

competitive advantages. We then discuss novel experimental

and computational approaches to developing PPI inhibitors,

with illustrative examples. A key point that we address concerns

insights into the molecular basis for the reduced druggability of

PPIs, in terms of how protein surfaces interact with small mole-

cules. To focus on current approaches, we have chosen to cite

recent applications of each approach rather than earlier work

in their development.

Although most approved PPI inhibitors currently find applica-

tion as treatments for cancer or in regulation of the immune sys-
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tem, therapeutics targeting infectious diseases such as HIV have

also been approved. With a greater understanding of the cellular

pathways in different organismswill come an increase in the abil-

ity of PPI inhibitors to target infectious diseases. At the same

time, the availability of patient-specific and tumor-specific data

from high-throughput genome sequencing will enhance the po-

tential of PPI inhibitors for targeting cancer. Prior to the early

1990s, PPI inhibitors were primarily identified through pheno-

typic screening, consistent with drug discovery approaches at

the time. From the more recent examples, it is interesting to

note that clinical candidates were originally identified using a

wide variety of different in vitro approaches, including radioli-

gand binding assays, fluorescence-based assays, fragment-

based drug discovery (FBDD), and peptide mimic approaches.

This observation suggests that PPI drug targets should be ap-

proached using several experimental methods, to maximize

the probability of finding promising small-molecule leads. Ex-

ploitingmultiple approaches is important because different kinds

of PPI exhibit significantly different structural characteristics and

present different challenges. For example, inhibitors required to

mimic linear protein sequences (such as integrin inhibitors) have

proved more successful than inhibitors required to mimic single

regions of secondary structure (such as a-helix or b-hairpin

mimics), which in turn have proved more successful than inhibi-

tors required to mimic discontinuous binding epitopes derived

from tertiary structures (Arkin et al., 2014). In addition to small

molecules, there has been great interest in the use of biologics

to target PPIs. It is our opinion that, in the majority of cases,

extracellular targets are best approached with biologics such

as antibodies or protein drugs. In contrast, biologics are inher-

ently less suitable for intracellular targets in the current state of

the art, necessitating the use of small molecules. While the use

of biologics to target PPIs is an interesting topic, we have chosen
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Table 1. Examples of Small-Molecule PPI Modulators in Clinical Use or Currently Undergoing Clinical Trials, Including their Mode of

Action, Identification Method, and Clinical Status

Name Structure Mode of Action Identification Method Clinical Status

Colchicine

(Ahern et al., 1987)

microtubule

polymerization

inhibitor

phenotypic screen approved for gout

Vinblastine

(Noble et al., 1977)

microtubule

polymerization

inhibitor

phenotypic screen approved for several

carcinomas

SAR1118

(Zhong et al., 2012)

LFA-1/ICAM-1

inhibitor

peptide mimic phase III for

dry eye

Navitoclax (ABT-263)

(Tse et al., 2008)

Bcl-2/Bcl-XL inhibitor fragment screen phase II cancer

RG7112 (Vu et al., 2013) p53/MDM2

inhibitor

in vitro assay phase Ib cancer

BI224436

(Fader et al., 2014)

LEDGF/integrase

inhibitor

in vitro assay phase I HIV

LFA-1, lymphocyte function associated antigen 1; ICAM-1, intercellular adhesion molecule 1; Bcl-2, B-cell lymphoma 2; MDM2, mouse double minute

2; LEDGF, lens epithelium derived growth factor.
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to limit the scope of this review to small molecules, peptides, and

peptide mimics. For a thorough discussion on the subject of bi-

ologics, we refer the reader to other reviews (Leader et al., 2008;

Sathish et al., 2013). However, it is worth nothing thatmany of the

advantages and many of the challenges relevant to developing

small-molecule inhibitors of PPIs are also relevant to the devel-

opment of biologics.
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PPI Inhibitors as Next-Generation Therapeutics
Expanding the Druggable Genome

The pharmaceutical industry has successfully developed drugs

targeting only a small fraction of the components in the cellular

signaling pathways that are misregulated in disease. Recent

analysis of drug discovery efforts reveals that of the 15,000–

20,000 genes encoded by the human genome, less than 300
hts reserved
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have been specifically targetedwith small molecules (Overington

et al., 2006). More importantly, approximately two-thirds of these

are directed against only ten classes of target, which comprise

the so-called druggable genome. This analysis suggests that

the size of the classically druggable genome is likely to be around

1,500 proteins at best. Expanding the druggable genome by ac-

cessing new target classes is therefore of the utmost importance

in order to deliver improved health care. An accepted route to ex-

panding this target repertoire is to generate molecules that

inhibit the physical interaction of biological macromolecules

(Archakov et al., 2003; Fry, 2006; Ruffner et al., 2007; Wells

and McClendon, 2007). All cellular pathways are characterized

by the physical interaction of biological macromolecules, most

notably PPIs. Developing the technology required to find small-

molecule inhibitors of PPIs represents a significant step toward

expanding the druggable genome.

Increased Selectivity

Compared with the highly conserved nature of substrate bind-

ing pockets in enzyme classes such as kinases, PPI interfaces

are inherently more diverse. For this reason, commentators

have long postulated that PPI inhibitors will offer increased

selectivity compared with existing small molecules. Maximizing

target selectivity, of course, reduces the likelihood of off-target

toxicities. In the well-publicized case of ATP-competitive kinase

inhibitors, it is now an essential component of any assay

cascade to rapidly ascertain the level of selectivity at target

compared with the remainder of the kinome, by comparison

against a panel of kinases (Davis et al., 2011). While multi-ki-

nase inhibitors have shown clinical utility in some oncology set-

tings (Rhodes et al., 2008), the need to reduce dose-limiting

toxicities by increasing selectivity is a central driver for all

drug discovery projects. For what reasons are PPI inhibitors

likely to be more selective than their substrate-competitive

counterparts? Perhaps the single most important reason is

that the large surface area of a typical PPI interface offers

more room to encode selectivity compared with the physically

constrained environment of a substrate binding site. Incorpo-

rated within this concept is the fact that the chemical nature

of substrate binding sites are defined absolutely by an invariant

small molecule, while PPI interfaces have co-evolved together

unhindered by a locked chemical structure, and, by definition,

are therefore more diverse. At present, there is currently no

PPI equivalent of a ‘‘kinase selectivity panel’’ other than the

cell itself, and with only a small number of PPI inhibitors having

made it to the clinic thus far, it is too early to draw any data-

driven conclusions regarding this selectivity issue. However,

the use of stapled a-helical peptides (see the section on Pep-

tides and Peptide Mimics) provides encouraging preliminary

data that selectivity at PPI interfaces is indeed achievable.

Although still in its infancy, this approach has already generated

numerous a-helical peptides that show clear target engage-

ment and mechanism-dependent phenotypic responses in

cell-based assays, and, more importantly, are tolerable and effi-

cacious in in vivo models (Moellering et al., 2009). The impor-

tance of this observation lies in the fact that around 30% of

all protein secondary structure is a-helical (Azzarito et al.,

2013) and that, even with this limited template, specificity is

achieved in the cell in order to drive orchestrated signaling

pathways.
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Reduced Susceptibility to Resistance Mutations

Clinical resistance to substrate-competitive enzyme inhibitors

occurs through the selection of mutant enzymes in which inhib-

itor binding is prevented by the alteration of non-essential struc-

tural features that contribute to binding affinity, without affecting

the ability of the enzyme to bind to its natural substrate. In

contrast to the evolutionary conservation of enzyme active sites,

the structural features that underlie PPIs are often quite distinct,

even between closely related enzymes, in enabling their specific

cellular functions. These diverse structural features would seem

likely to make resistance mutations that decrease inhibitor bind-

ing without perturbing the natural substrate less frequent. There-

fore, in principle, targeting the PPIs that underlie protein function

offers an attractive alternative to active-site inhibition of en-

zymes. Combining ATP-competitive kinase inhibitors with allo-

steric inhibitors of the same target to stall or even prevent the

emergence of resistance is a novel concept in cancer drug dis-

covery. Recent studies from Novartis have supported this

concept, at least in a pre-clinical setting (Adrián et al., 2006;

Zhang et al., 2010). In these studies, the combination of the

ATP-competitive Bcr-Abl inhibitor imatinib with an allosteric in-

hibitor, GNF-5, suppressed the emergence of resistance in cell

culture experiments, and showed additive efficacy in an in vivo

model of bone marrow transplantation. In cases where resis-

tance mutations do occur, strategies to diminish their effect

can be applied. These include machine-learning techniques,

which have been applied to designing antimicrobial peptides

(Fjell et al., 2009), and the substrate envelope hypothesis,

whereby small-molecule inhibitors designed to mimic the shape

of the natural substrates do not to lead to the development of

resistance mutations (Parai et al., 2012).

Generating Novel Chemical Probes

In addition to widening the druggable genome and providing a

wealth of new therapeutic targets, inhibitors of PPIs may also

be useful chemical tools to probe cellular networks. Compared

with small interfering RNA knockdown, they offer the potential

of inhibiting a specific protein function without completely

removing the protein from the cell. Several academic drug dis-

covery platforms such as the NIH Molecular Libraries Program

and the Structural Genomics Consortium (SGC) have made opti-

mized compounds publicly available as probe compounds. In

the case of the SGC, these follow stringent criteria making

them suitable for effectively studying protein function: on-target

potency must be better than 100 nM, selectivity must be at least

30-fold, while cellular potency must be better than 1 mM (http://

www.thesgc.org/chemical-probes). Among these reported

probes, PPI modulators of the BET bromodomains have been

used to study their biological function and potential as anti-can-

cer therapeutics (Filippakopoulos et al., 2010).

Scope to Tailor Physical Properties

PPI inhibitors will by nature tend to be more solvent exposed

than traditional active-site inhibitors because they bind at pro-

tein surfaces. While this is a disadvantage in terms of ligand

efficiency (LE), it can be an advantage in terms of pharmacoki-

netic/pharmacodynamic (PK/PD) control. An inhibitor that is

buried in a binding site is likely to have the majority of its surface

in close contact with the protein and, thus, very little of its sur-

face available for chemical elaboration. Conversely, a PPI inhib-

itor that is half exposed to solvent has a much greater scope for
ology 22, June 18, 2015 ª2015 Elsevier Ltd All rights reserved 691
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chemical elaboration. This allows key physical properties such

as the octanol/water partition coefficient (LogP) and polar sur-

face area to be tailored without adversely affecting the binding

affinity. This scenario has been exploited by Abbott for the

development of Bcl-2 inhibitors in the progression from ABT-

737 to ABT-263, where solvent-exposed positions were modi-

fied to optimize the balance between oral exposure in animals

and efficacy in human tumor cell lines (Tse et al., 2008). A

similar approach was adopted during the optimization of the

MDM2/p53-inhibiting compounds, the Nutlins, to yield

RG7112, an inhibitor now in human clinical trials (Vu et al.,

2013). Increased solvent exposure of an inhibitor in complex

also leads to more natural sites for synthetic coupling with

cell-trafficking moieties such as peptides and sugars, in addi-

tion to other species appropriate for pro-drug strategies

(Gynther et al., 2008, 2009).

Major Challenges of Developing PPI Inhibitors
Identifying Therapeutically Relevant PPIs

Therapeutic targets are either established on a case-by-case ba-

sis as a result of focused research efforts, often within academia,

or are identified using unbiased screens that attempt to asso-

ciate particular gene products with a specific cellular response

or phenotype. In terms of focused research, recent efforts

have been guided by studying PPI networks. Understanding

such networks would allow for major advances in biology such

as identifying synthetic lethal interactions, understanding modes

of toxicity, and explaining the resilience of cellular networks to

disruption (Hopkins, 2008); these are all important factors in

drug discovery. In particular there has been a focus on under-

standing the role of hub proteins in cellular networks (Batada

et al., 2006) and exploring their potential as drug targets (Hop-

kins, 2008). Computational work in this area holds much promise

(Hood and Perlmutter, 2004; Yildirim et al., 2007), but the

complexity of biological systems and the need to integrate

diverse data and different methods means that successful appli-

cation of systems biology to target selection remains a goal for

the future.

RNAi has proved to be a successful tool for identifying new

therapeutic targets that fall within the definition of classical

drug targets, such as kinases, for both focused and unbiased

approaches. However RNAi has, thus far, failed to expand the

‘‘druggable genome’’ beyond established target classes. This

limitation can be explained simply by the fact that disruption

of macromolecular assemblies by the loss of a single protein

component is likely to lead to a confounded phenotypic effect,

which is not directly attributable to the loss of that particular

protein but to the perturbation of a higher-order macromolec-

ular structure. In order to identify novel and therapeutically

relevant PPIs, we propose that a different suite of target identi-

fication tools will be required. The most intuitive method for dis-

rupting PPIs is to use ectopically expressed peptides to act in

the manner of dominant negatives, thereby inhibiting PPIs.

Screens of this type have been approached in a number of

ways. In their simplest form, random peptide libraries can be

generated and expressed in a mammalian cell line, and

deflection from the intended phenotype measured using an

appropriate assay. However, screening using random peptide

libraries has been extensively investigated, and currently avail-
692 Chemistry & Biology 22, June 18, 2015 ª2015 Elsevier Ltd All rig
able methods suffer from low hit rates (as low as 1 in 106–107)

that often preclude further progression (Roepe, 2001; Xu

et al., 2001). New approaches addressing this problem remain

a major unmet need.

Challenges of Druggability

The concept of druggability measures the suitability of a protein

target or specific binding site for development of a small-mole-

cule inhibitor. It is important to note that studying binding to the

protein target in isolation does not consider PK/PD factors that

influence druggability. Thus, bindability (Sheridan et al., 2010) or

ligandability are perhaps better terms than druggability, but

druggability tends to be the common parlance. The most

obvious difficulty in targeting PPIs for drug development is the

reduced druggability of protein surfaces in comparison with

buried active sites, which have evolved to bind small molecules

(Wells and McClendon, 2007). For example, in the work by Haj-

duk et al. (2005) on protein druggability of different protein clas-

ses derived from receptor-based nuclear magnetic resonance

(NMR) screening of a fragment library, the protein binding tar-

gets are at the lower end of the druggability spectrum. Of the

PPIs screened, only 30% were identified as containing a drug-

gable binding site. This compares with the traditionally drug-

gable protein kinases (45%), oxidoreductases (60%), and lyases

(75%). In another study, druggability was correlated with

compact pockets and rough surfaces, rather than the large

and flat interfaces typically associated with PPIs (Wells and

McClendon, 2007). The interaction energy between a ligand

and a protein is derived from close contact between the two

partners. In a buried binding site the protein surface can contact

100% of the ligand surface, whereas the interface may contact

50% or less of the ligand surface at a solvent-exposed protein

surface. Thus, the inherent challenge in developing molecules

that bind strongly to flat surfaces is the difficulty in achieving suf-

ficient contact to yield the required interaction energy. For this

reason, the expectation is that PPI inhibitors will need to be

larger on average than traditional inhibitors to reach the same

levels of potency. This assertion is supported by data from a

number of studies (Higueruelo et al., 2009; Labbé et al., 2013;

Morelli et al., 2011). For example, the PPI inhibitors studied in

the TIMBAL database had a higher average molecular weight

than drug-like molecules bound to proteins in the PDB (420

versus 360) and, in addition to being heavier, they also had a

higher calculated octanol/water partition coefficient (cLogP)

(4.0 versus 2.6). In terms of drug development, it is known that

both molecular weight and lipophilicity are linked to poor

PK/PD properties (Johnson et al., 2009). It is also interesting to

consider the effect of these differences on the LE of PPI inhibi-

tors. LE is a measure of the average contribution of each heavy

atom to the binding affinity. It is commonly calculated from the

using the pIC50 (logarithmic half-maximal inhibitory concentra-

tion) the compound and the number of heavy atoms it contains

(HA), using Equation 1 (Hopkins et al., 2014).

LE=
1:373pIC50

HA
(Equation 1)

Lipophilic ligand efficiency (LLE) is another effective metric to

drive decision making in medicinal chemistry, due to the delete-

rious effects of high lipophilicity on outcomes in drug discovery.

LLE is calculated from the pIC50 of the compound and its cLogP,
hts reserved



Figure 1. Distributions of Ligand Efficiency and Lipophilic Ligand
Efficiency
Bar graphs showing the distributions of (A) ligand efficiency (LE) and (B) lipo-
philic ligand efficiency (LLE) using IC50 data for 1,736 small molecules in the
TIMBAL database of PPI inhibitors and 37,143 small-molecule inhibitors in the
curated portion of the BindingDB database. Heavy atom counts and cLogP
values were computed using Schrödinger’s Qikprop, and the small molecules
were prepared using Schrödinger’s Ligprep.
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using Equation 2. It is sometimes termed lipophilic efficiency or

LiPE.

LLE=pIC50 � cLogP (Equation 2)

Figure 1 presents LE and LLE data for PPI inhibitors in the

TIMBAL database and inhibitors in the BindingDB database

(Liu et al., 2007). Integrins have been removed from the TIMBAL

data due to difficulties in their curation. In addition, integrins are

generally considered to have more in common with traditional

drug targets than with PPI targets, as they tend to bind very short

peptide motifs with high affinity. The results for the integrins are

presented in Figure S1. The average LE for the PPI inhibitors

studied was 0.23 kcal/mol per heavy atom, compared with an

average of 0.32 kcal/mol per heavy atom for inhibitors in the

BindingDB. The average LLE for the PPI inhibitors studied was

1.32, compared with an average of 3.12 for inhibitors in the Bind-

ingDB. As a guide the respective mean LE and LLE of oral drugs

have been calculated as 0.45 kcal/mol per heavy atom and 4.43

(Gleeson et al., 2011; Hopkins et al., 2014), and it has been sug-

gested that drug candidates should have an LE of greater than
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0.30 kcal/mol per heavy atom (Hajduk, 2006; Hopkins et al.,

2004) and an LLE of greater than 5.00 (Leeson and Springthorpe,

2007). Only 14.5% of the molecules in TIMBAL pass this LE filter

and only 4.5% pass the LLE filter. Conversely, 54.8% of the mol-

ecules in the BindingDB pass the LE filter and 17.4% pass the

LLE filter. In good agreement with this work, previous studies

have calculated the average LE as 0.24 kcal/mol per heavy

atom (Wells and McClendon, 2007) or 0.27 kcal/mol per heavy

atom for PPI inhibitors and 0.32 kcal/mol per heavy atom for

typical medicinal chemistry leads (Higueruelo et al., 2009).

Based on these studies, a PPI inhibitor with 30 heavy atoms is

expected to have a binding affinity of 1 mM, versus 90 nM for

the typical medicinal chemistry lead (Hopkins et al., 2004). To

reach 90 nM potency, the molecular weight of the PPI inhibitor

would have to be increased by adding five to six heavy atoms.

It is important to note that adding atoms to a ligand has a ten-

dency to detrimentally affect its absorption, distribution, meta-

bolism, and excretion (ADME) profile. Thus, PPIs typically have

reduced druggability due to the inherent conflict between the

two key goals of maximizing surface contact area and optimizing

ADME properties. Reduced druggability will also have an impact

upon high-throughput screening (HTS), as there will on average

be fewer hits for a given library. This will lead to fewer alternative

chemotypes available for drug development, and in some cases

no viable hits. In particular, fragment screening against PPIs can

be especially challenging (Dömling, 2008), unless the target has

a strong binding hotspot or innovative strategies are applied (see

the section on Fragment Screening). To address this problem,

targeted small-molecule libraries for PPIs are now available,

containing larger and more complex molecules (see the section

on Customized HTS Libraries).

Structural Plasticity

While it is clear that PPIs can yield druggable targets, many of the

success stories involve proteins that undergo structural changes

upon binding (Aguirre et al., 2013). In general, these structural

changes at the binding interface tend to reveal more lipophilic

surfaces and pockets that complement lipophilic regions of the

binding partner. Such protein flexibility will confound traditional

structure-based approaches to target selection and lead optimi-

zation, because druggable pockets are not apparent in the apo

protein structures. For example, proteins such as MDM2 are

only predicted to be druggable when a liganded crystal structure

is used for the analysis (Cheng et al., 2007). Figure 2 illustrates

the extent of such structural changes in the case of six PPI inhib-

itors from the PDB (Berman et al., 2000). Figures 2A–2C illustrate

inhibitors of Bcl-XL, IL-2, and HDM2 overlaid on the protein

structure from the apo state. The changes in protein structure

mean that large portions of the inhibitors protrude into the pro-

tein surface. There are also cases, such as Keap1 (Figure 2D),

where modest changes at the protein surface can increase the

size of binding pockets and allow larger inhibitors than would

be expected from an analysis of the apo structure. While there

are cases where the apo and holo states are very similar, such

as HIV integrase (Figure 2E) and KRas (Figure 2F), these seem

to be in the minority. Six cases of proteins that undergo major

structural changes upon binding are also presented in the review

by Wells and McClendon (2007) on PPI inhibitors: IL-2, Bcl-XL,

HDM2, HPV11 3 102, ZipA, and TNF. The videos presented in

their supporting information illustrate the remarkable extent of
ology 22, June 18, 2015 ª2015 Elsevier Ltd All rights reserved 693



Figure 2. Apo Protein Structures of Six
Surfaces Involved in PPIs, Showing Clashes
with Ligands Overlaid from Protein-Ligand
Complex Structures
The apo and holo structures were aligned using
residues within 5.0 Å of the ligand, and the heavy
atom root-mean-square deviation (RMSD) of these
residues was calculated.
(A) Bcl-XL from PDB: 1R2D overlaid with the ligand
from PDB: 2O2N. The protein surface is shaded in
orange and the RMSD is 1.51 Å.
(B) IL-2 from PDB: 1PY2 overlaid with the ligand
from PDB: 3INK. The protein surface is shaded in
cyan and the RMSD is 1.12 Å.
(C) HDM2 from PDB: 1Z1M overlaid with the ligand
from PDB: 4IPF. The protein surface is shaded in
magenta and the RMSD is 1.49 Å.
(D) Keap1 from PDB: 1ZGK overlaid with the ligand
from PDB: 4IFN. The protein surface is shaded in
yellow and the RMSD is 0.40 Å.
(E) HIV integrase from PDB: 1EX4 overlaid with the
ligand from PDB: 4CE9. The protein surface is
shaded in purple and the RMSD is 0.76 Å.
(F) KRas from PDB: 3GFT overlaid with the ligand
from PDB: 4EPY. The protein surface is shaded in
pink and the RMSD is 1.02 Å. The ligands are dis-
played using CPK atom coloring in all cases.

Chemistry & Biology

Review
the structural changes between the complexwith the native part-

ner protein and the complex with the inhibitor.

Novel Experimental Tools for Targeting PPIs
Customized HTS Libraries

Interfaces between proteins are often large and lack a small-

molecule active site; therefore, it is no surprise that reported in-

hibitors are distinct from traditional drugs. Recent analyses have

shown that inhibitors of PPIs tend to be larger and more hydro-

phobic than traditional drugs or compounds found in current

screening collections (see the section on Challenges of Drugg-

ability). These observations have led several groups to define

rules to enrich screening collections for putative PPI inhibitors.

Re-evaluating guidelines is certainly a prudent choice, given

how poorly traditional compound collections have fared when

screened against PPIs (Fry et al., 2013). Computational ap-

proaches to do this have recently been presented, and several

new inhibitors of the p53/MDM2 interaction have been identified

(Koes et al., 2012; Reynès et al., 2010). Another interesting devel-

opment was the introduction of the ‘‘rule-of-four’’ (RO4), which

states that compounds should havemolecular weights of greater

than 400, cLogP values of greater than 4, more than four rings,

and more than four hydrogen-bond acceptors to deliver higher

hit rates for PPIs (Morelli et al., 2011). However, one must note

the increased risk of ADME failures in developing large, lipophilic

compounds (see the section on Challenges of Druggability). In

fact, recent data show that PPI inhibitors in clinical trials do not

have higher cLogP values compared with non-PPI inhibitors

despite having higher molecular weights (Kuenemann et al.,

2014). Despite these caveats, the RO4 has subsequently been

used to construct a PPI-focused library from commercially avail-

able compounds (Hamon et al., 2013). In addition to academic

groups, companies have adopted such rules and have designed

their own PPI-focused libraries. ChemDiv, Asinex, Comminex,
694 Chemistry & Biology 22, June 18, 2015 ª2015 Elsevier Ltd All rig
Life Chemicals, Otava Chemicals, and NQuix all have libraries

targeted at PPIs, which use both the RO4, decision trees, and

machine-learning methods (Neugebauer et al., 2007), among

other selection criteria (Hamon et al., 2013; Harris et al., 2011).

A set of commercially available libraries is detailed in Table 2.

Despite their promise, there are several more general limitations

to current approaches to library design for PPIs (Laraia and

Spring, 2013). The number of reported PPI inhibitors is relatively

low, and the number of successfully inhibited targets is even

lower; therefore, there are insufficient data for an accurate anal-

ysis to be conducted. In addition, very few PPI modulators have

been approved for clinical use, and those that have are mostly

natural products whose mechanism was only discovered

subsequently. Examples include rapamycin, cyclosporine, and

modulators of tubulin dynamics (Pommier and Marchand,

2012). Compounds used in the analyses are also heavily opti-

mized and originate from both fragment and HTS approaches,

and therefore do not necessarily reflect the requirements for an

initial lead. The concept of a ‘‘lead-like’’ library has been around

for many years (Teague et al., 1999), but a similar approach for

PPIs has yet to be fully validated. The difficulty lies in the fact

that PPIs are not a unified target class (like G-protein coupled re-

ceptors or kinases), which often contain structural similarities

that can be leveraged in library design. Therefore, small-mole-

cule inhibitors for different PPIs are unlikely to be similar to one

another, except in their ability to bind to the hydrophobic patches

at protein surfaces (Kuenemann et al., 2014). This would suggest

that screening libraries should be as diverse as possible to cater

for a variety of different PPIs (Huggins et al., 2011). The only

exception to this may be PPIs mediated by secondary protein

structures such as a helices (Whitby and Boger, 2012), which

are discussed separately in the section on Peptides and Peptide

Mimics. A validated approach for obtaining diverse screening

collections is diversity-oriented synthesis (Galloway et al.,
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Table 2. Commercial Libraries Targeted at PPIs

Supplier No. of Compounds Design Method Website

Otava Chemicals 1,330 decision trees http://www.otavachemicals.com/products/target-focused-

libraries/protein-protein-interaction

Otava Chemicals 1,020 similarity search http://www.otavachemicals.com/products/target-focused-

libraries/protein-protein-interaction

Otava Chemicals 520 b-turn mimetics http://www.otavachemicals.com/products/target-focused-

libraries/peptidomimetic

Asinex 7,000 shape analysis http://www.asinex.com/PPI_Library.html

ComInnex custom helix mimetics, macrocycles http://www.cominnex.com/focused_and_targeted_libraries

Life Chemicals 850 machine learning http://www.lifechemicals.com/services/targeted/general

Life Chemicals 23,200 2D fingerprint similarity http://www.lifechemicals.com/services/targeted/general

Life Chemicals 4,300 rule-of-four http://www.lifechemicals.com/services/targeted/general

NQuix NA NA http://nquix.com/screening-libraries

ChemDiv 125,000 peptidomimetics http://www.chemdiv.com/products/screening-libraries/

chemdivs-screening-libraries-list/
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2010), whose mantra is that compounds containing as many

diverse scaffolds as possible are synthesized efficiently in few

steps. Diversity is generally assessed using computational

methods, and several PPI inhibitors have been identified using

this approach (Marcaurelle et al., 2009). However, more research

is required to fully evaluate the potential of such libraries for the

identification of PPI inhibitors. With so many companies offering

targeted PPI libraries, it should only be a matter of time before

these approaches to library generation are validated or dis-

credited.

Assay Platforms for HTS

Screening methods for inhibiting PPIs vary depending on the

overall approach taken (Pagliaro et al., 2004). Different tech-

niques can be used for fragment screening (see the section on

Fragment Screening) rather than the more traditional HTS ap-

proaches (Winter et al., 2012). For HTS, the most simple and

widely used approach is the fluorescence polarization (FP) assay

(Arkin et al., 2004). This technique requires that one component

of the PPI can be truncated to a smaller peptide that still retains

affinity for the other protein. This peptide is then attached to a flu-

orophore, and the change in tumbling rate between bound and

unbound states forms the basis for the assay window. These as-

says are fast to run, amenable to 384- or even 1,536-well for-

mats, and require very little labeled peptide and protein. This

makes them ideal for HTS, which is why they have been used

on a wide scale. One of the downsides to this system is the

requirement for one of the two interacting proteins to be trun-

cated to a small (<40 amino acids) peptide. While FP is a suitable

technique for many PPIs, it may not be appropriate for PPIs with

extremely large binding interfaces or those with discontinuous

binding epitopes. In this case, ELISAs may offer an alternative,

as two full-length proteins can be used. However, the throughput

of ELISA assays is significantly lower. Other widely used assay

techniques include Förster Resonance Energy Transfer (FRET)

and AlphaScreen, both of which are extensively discussed else-

where (Arkin et al., 2004). An important issue with these high-

throughput assay techniques is the high rate of false positives,

which can occur as a result of fluorescent molecules that inter-

fere with the assay, as well as redox-active compounds or pro-
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tein-precipitating compounds. Ideally such compounds would

already be removed during the preparation of the screening li-

brary, and data-driven computational filters are already available

for this purpose (Baell and Holloway, 2010). However, if com-

pounds that do not pass these filters are included in screening

libraries, close attention must be paid to the results from

follow-up assays. Biophysical techniques (Dias and Ciulli,

2014; Pfaff et al., 2015) have been used for this purpose and

include NMR, surface plasmon resonance, and isothermal titra-

tion calorimetry. X-Ray crystallography offers a final validation of

binding and allows structure-based drug design. All recent suc-

cessful PPI projects have benefited from structural information,

as rearrangements in the protein upon small-molecule binding

are frequently observed (see the section on Structural Plasticity).

One could argue that traditional HTS, in addition to fragment

screening efforts against PPIs, would struggle enormously

without structural data.

Fragment Screening

FBDD has been adapted on a wide scale in the last 10–15 years.

One of the key advantages of this approach is the more efficient

coverage of chemical space by compounds of lower molecular

weight, requiring smaller screening libraries compared with

HTS. In the context of PPIs, numerous examples of inhibitors

have been identified using this approach (Abdel-Rahman et al.,

2011; Douse et al., 2015; Gao et al., 2014; Holvey et al., 2015;

Jose et al., 2012; Lund et al., 2015; Molzan et al., 2012; Moore

et al., 2009; Patrone et al., 2013; Van Molle et al., 2012; Yin

et al., 2014). Prominent examples include the Bcl-2 inhibitor

ABT-737 (Oltersdorf et al., 2005), inhibitors of the RAS oncogene

(Maurer et al., 2012), and inhibitors of the BET bromodomains

(Chung et al., 2012). As PPIs tend to stretch over a large surface

area but contain hotspots contributing a large proportion of the

binding energy, fragments would appear suitable to identify

these sites (Coyne et al., 2010; Scott et al., 2013; Valkov et al.,

2012). However, the risk of missing fragments whose binding af-

finity is beyond the limits of detection exists. This is more likely to

be the case in PPIs, where a fragment will cover a smaller area of

the overall binding interface. An interesting approach to partially

circumvent this problem is the use of tethering fragments (Wilson
ology 22, June 18, 2015 ª2015 Elsevier Ltd All rights reserved 695
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and Arkin, 2013). These contain a thiol moiety for crosslinking

with protein thiols before engaging in non-covalent interactions.

This allows the adduct to be detected by mass spectrometry,

and was successfully used to identify an allosteric site to the

interleukin/interleukin-receptor binding interface (Braisted

et al., 2003). A criticism of the FBDD has been the lack of

three-dimensionality in the screening collections (Morley et al.,

2013). To address this issue, researchers at the Broad Institute

have implemented a diversity-oriented synthesis approach to

design sp3 and stereochemically rich fragments (Hung et al.,

2011). The resulting effect on rate and quality of hits will deter-

mine the utility of these compounds. In addition to providing

valuable hits for further elaboration, fragment screening has

gained traction as a tool to establish PPI druggability (Edfeldt

et al., 2011). It has been hypothesized that low hit rates in frag-

ment screens occur as a result of poor druggability, and that

therefore in such cases it may be wise to re-assess screening

programs of any kind for a given target or to select other ap-

proaches such as rational design. In summary, FBDD is a

welcome addition to the repertoire of techniques available for

identifying PPI modulators, and we believe that it complements

rather than replaces existing strategies such asHTS. If resources

are available and the target sufficiently validated, we would

advocate the use of such approaches in parallel to maximize

the chances of success.

Peptides and Peptide Mimics

Several research groups have shown that a large percentage of

PPIs are mediated by protein secondary structures. In particular,

a helices occur frequently on protein interfaces, and short a-he-

lical peptides based on the key binding hotspot may provide

suitable inhibitors of PPIs (Bullock et al., 2011). This enticing hy-

pothesis would suggest that every a-helix-containing PPI may

have a ‘‘ready-made’’ lead compound available. However, un-

modified peptides tend to be poor inhibitors due to the large

entropic penalty of binding to their target. Therefore, the search

for stabilized peptides and small molecules that mimic protein

secondary structure has recently been an active area of research

(Azzarito et al., 2013; Lao et al., 2014; Lee et al., 2011; Walensky

and Bird, 2014). Pioneering work by Grubbs, Verdine, Walensky,

and Sawyer on cyclizing alkene-containing peptides using ring-

closing metathesis has been shown to increase a helicity, po-

tency, and stability for select examples (Blackwell and Grubbs,

1998; Chang et al., 2013; Moellering et al., 2009). Aileron, a com-

pany founded to pursue this approach, has successfully

completed its first phase I clinical trial targeting growth hor-

mone-releasing hormone (Grigoryev, 2013). Other criticisms of

peptide therapeutics are the lack of cell permeability in the

absence of a specific targeting sequence and poor PK/PD prop-

erties. The success of the stapled peptide approach has been

the ability to obtain cell-permeable, active peptides without

tags and with improved PK/PD properties. However, this suc-

cess was achieved through trial and error rather than rational

design, because permeability and stability are very difficult to

calculate a priori. Thus, it is necessary to conduct extensive pep-

tide structure-activity relationships (SAR) to identify suitable can-

didates. Despite this, stapled or cyclic peptides remain an

exciting approach to tackle PPIs, especially if one considers

that several naturally occurring cyclic peptides are already

approved drugs with acceptable properties (Liskamp et al.,
696 Chemistry & Biology 22, June 18, 2015 ª2015 Elsevier Ltd All rig
2008). Different methods of cyclization and stabilization have

now been reported, providing a wealth of options to those at-

tempting this approach (Lau et al., 2014).

In addition to stabilized peptides, small-molecule scaffolds

that mimic protein secondary structure have been reported by

several groups. Pioneering work by Hamilton identified the ter-

phenyl scaffold as an a-helix surrogate (Cummings and Hamil-

ton, 2010). Second-generation scaffolds that possess improved

solubility and synthetic tractability have been identified (Shagi-

nian et al., 2009). Of particular note is the work by the Wilson

group on the solid-phase synthesis of oligo-amides (Murphy

et al., 2013). This mimic can now be assembled rapidly with sim-

ple preparation and purification methods, and different building

blocks are now available for every amino acid. Despite promising

work in the field, potent inhibitors derived from this approach

have yet to be published, and it seems increasingly unlikely

that a singular scaffold will be applicable to all a-helix-mediated

PPIs. However, it continues to be a fruitful approach for discov-

ering probe compounds, and further developments may provide

compounds for clinical testing.

Novel Computational Tools for Targeting PPIs
In this sectionwe discuss the computational tools that have been

used to facilitate and understand PPIs and to aid in the discovery

of inhibitors. A number of the computational techniques dis-

cussed in this article are described in Table S1, along with refer-

ences to available software and theory papers.

Predicting PPI Interfaces

Studying a PPI as a potential therapeutic target first requires

identification and characterization of the binding interface. A

number of computational methods have been used to identify

PPI interfaces from protein structures (Fernández-Recio, 2011;

Fuller et al., 2009). Computational predictions based on a

consensus neural network method were found to yield 80% pre-

diction accuracy with 51% coverage on a set of 100 non-homol-

ogous protein chains taken from PPI complexes (Chen and

Zhou, 2005). Statistical methods based on residue pair fre-

quencies (Negi and Braun, 2007), frequencies of short polypep-

tide sequences (Pitre et al., 2006), and probabilistic analysis of

orthogonal protein features show similar predictive power (Scott

and Barton, 2007). Methods based on the similarity of interface

regions have also been successfully employed to predict the

structure of binding interfaces, but require a template in the

reference dataset to achieve this (Tuncbag et al., 2012). How-

ever, due to the effect of protein flexibility discussed above, it

is easier to identify a binding interface from a separated PPI

complex, and a generally applicable method should be able to

identify the binding interface from protein structures in their

separated structures. It is interesting to note that the abilities of

numerous methods to achieve this task have been indepen-

dently assessed by CAPRI (Critical Assessment of PRedicted

Interactions), an ongoing experiment to assess the ability of pro-

tein-docking methods to predict PPIs. Through 9 years and four

rounds of testing on 42 test cases, the conclusion is that current

methods yield reasonably accurate models, but only in the

absence of major conformational changes (Janin, 2010). In addi-

tion to identifying binding interfaces, it would be very useful to

have the power to identify potential allosteric binding sites that

modulate PPIs (Freire, 2000). While efforts have been focused
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in this direction (Demerdash et al., 2009), it remains an area in

need of significant improvement.

Identifying Binding Hotspots

Hotspots were originally identified as residues at a PPI interface

that contribute significantly to the binding affinity, such that their

mutation to alanine leads to a significant reduction in binding af-

finity (Bogan and Thorn, 1998; Clackson and Wells, 1995). The

term has also been used to refer to clusters of such residues,

which we refer to here as protein surface hotspots. The term

hotspot has also been identified with a site on a protein that

has high propensity for ligand binding, and we refer to these

sites as ligand binding hotspots. The determinants that underlie

both phenomena are very similar, and here we use the term hot-

spot to overarch the two (Zerbe et al., 2012). There are a num-

ber of methods for identifying hotspot regions at protein sur-

faces (Villoutreix et al., 2014), commonly assessed by their

ability to recapitulate experimental data from sources such as

the ASEdb alanine scanning energetics database (Thorn and

Bogan, 2001), the BID (Binding Interface Database) (Fischer

et al., 2003), and the HotSprint database (Guney et al., 2008).

The first class of methods is empirical and correlates experi-

mental data with surface properties such as protein curvature,

electrostatic potential, or hydrophobicity. This approach has

generated software that accurately predicts protein surface hot-

spots, such as HotPoint (Tuncbag et al., 2009), and software

that accurately predicts ligand binding hotspots, such as Site-

Map (Halgren, 2009). The second class of methods uses explicit

computational alanine scanning, which predicts changes in

binding free energy upon mutation to alanine. This can be

achieved by free energy methods such as molecular me-

chanics/generalized Born surface area (Gohlke et al., 2003),

free energy perturbation (FEP), and thermodynamic integration

(TI) (Moreira et al., 2007). Recent studies suggest that the

MM-GBSA method yields accurate results that are comparable

or better than more computationally intensive TI calculations

(Martins et al., 2013). Other studies suggest that Poisson Boltz-

mann implicit solvation is more accurate than generalized Born

implicit solvation in the context of computational alanine scan-

ning (Bradshaw et al., 2011).

The third class of methods involves physics-based analysis of

ligand binding hotspots. This includes analysis of probe frag-

ments (Brenke et al., 2009), which suggest where larger ligands

will bind, but also water molecules (Haider and Huggins, 2013).

Hydrophobic desolvation is a key driver of PPIs, and binding hot-

spots are often found in hydrophobic regions. For this reason, it

is useful to consider water at PPI interfaces and also its displace-

ment by other small molecules (Landon et al., 2007). Solvation

has also been explicitly modeled using FEP, TI, and inhomoge-

neous fluid solvation theory (IFST) (Huggins and Payne, 2013;

Li and Lazaridis, 2006). Schrodinger’s WaterMap is a commer-

cially available IFST software package that is widely used in

the pharmaceutical industry to understand SAR, and has been

used to understand the determinants of affinity in the PPIs of

PLK1 (Huggins et al., 2010) and identify ligand binding hotspots

on the FKBP12 protein (Beuming et al., 2012). In this study, pre-

dicted hotspots correlate positively with a high hit rate in NMR

screening of fragments. A number of web server tools for hotspot

prediction are now available in all three classes, including Ro-

betta (Kim et al., 2004), DrugScorePPI (Krüger and Gohlke,
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2010), and HotPoint (Tuncbag et al., 2010). A list of such tools

can be found at http://www.vls3d.com. Within any of these ap-

proaches, it is clear that protein flexibility must be modeled to

yield a generally applicable tool for identifying binding hotspots

(Lexa and Carlson, 2010).

Modeling Molecular Flexibility

As discussed above, protein flexibility is a very important feature

of molecular recognition for PPIs (Brown and Hajduk, 2006). This

is true for interactions between native partners and for small-

molecule inhibitors. This means that conformational flexibility

must be considered explicitly for computational methods to be

effective in modeling a broad range of PPIs (see the section on

Structural Plasticity). One approach that has proved useful in

molecular docking is the use of predefined structural ensembles.

In this case, an ensemble of multiple protein structures is used

for analysis rather than one single protein structure. A recent re-

view notes that it leads to better performance than the worst sin-

gle protein structure in almost all cases (Korb et al., 2012). Thus,

approaches based on structural ensembles are preferred

because the virtual screening performance of a single protein

structure for a given ligand is unknown. In terms of selecting

the ensemble, protein structures can be derived from experi-

mental techniques such as NMR and X-ray crystallography

(Damm and Carlson, 2007) or from computational techniques

such as molecular dynamics (MD) (Cheng et al., 2008). Crucially,

it is clear that the selection of the ensemble is a critical determi-

nant of performance for molecular docking (Korb et al., 2012),

druggability assessments (Brown and Hajduk, 2006), and hot-

spot identification (Metz et al., 2012). While there have been ad-

vances in modeling induced fit effects, major difficulties remain

in modeling major domain motions (Wells and McClendon,

2007). The two key aspects of effective computational modeling

are comprehensive sampling techniques and accurate estima-

tion of free energy. Modeling large domain motion requires

both of these aspects. Thus, accurately computing the energetic

cost of protein rearrangement is achievable using FEP methods,

but only in cases where the ligand binding mode is known (Wang

et al., 2013). Similarly, replica exchange MD (REMD) (Miyashita

et al., 2009) and enveloping distribution sampling (Riniker

et al., 2011) have both been successfully applied to model large

domain motion, but extending these methods to virtual

screening and combinatorial molecular design is beyond the

scope of current computational power. However, computational

methods have shown promise in identifying transient pockets at

PPIs. These cryptic pockets are not present in the apo structure

of the protein, but are revealed upon ligand binding. Importantly,

such pockets are not an uncommon feature (Bernini et al., 2014;

Foster et al., 2012; Schames et al., 2004; Tan et al., 2012) and are

promising targets for therapeutic intervention (Johnson and Kar-

anicolas, 2013). Because these pockets are not present in the

majority of structures that make up the conformational ensemble

in the apo state, they can be difficult to identify using conven-

tional MD simulations. For this reason, methods that are based

on probe molecules, such as MixMD (Lexa and Carlson, 2013)

and SILCS (Foster et al., 2012; Raman et al., 2011), have proved

more effective. One additional factor is the interplay of the de-

grees of freedom for the water and protein, which can lead to

enthalpy/entropy compensation and confound commonly

applied computational approaches (Breiten et al., 2013). This is
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an area where progress is needed to improve the predictive po-

wer of computational methods.

Virtual Screening

Virtual screening (VS) is often used in an attempt to enrich com-

pound libraries for molecules with an increased likelihood of

hitting a particular target. The two main methods used for VS

are structure-based and ligand-based screening (Ripphausen

et al., 2010). Structure-based screening is commonly performed

using one of three techniques. Molecular docking uses an atom-

istic description to compute the ligand-protein interactions,

pharmacophore screening matches the features of the ligand

to those of the binding site, and shape-based screening as-

sesses the geometric fit between the ligand and the binding

site. Ligand-based screening is used to identify new hit mole-

cules using information about existing hit molecules. There are

a number of pitfalls associated with the use of VS (Scior et al.,

2012), and these should be understood before applying it. It

can also be useful to utilize an ensemble of protein structures

(see the section onModelingMolecular Flexibility) in all these ap-

proaches (Fan et al., 2009; Totrov and Abagyan, 2008). One

might expect that VS would find greater utility in identifying PPI

inhibitors, due to the lower experimental hit rates and require-

ment to test larger and more complex molecules. However, the

majority of VS methods have been optimized for buried active

sites, and it is not clear that these will translate to calculations

at protein surfaces. Despite this, existing and purpose-built VS

approaches have shown promise (Fernandez-Recio et al.,

2004; Rouhana et al., 2013; Villoutreix et al., 2014). For example,

a ‘‘fuzzy’’ pharmacophore model combined with GOLD docking

(Jones et al., 1995) was used to identify interferon-a inhibitors

(Geppert et al., 2012), and consensus scoring using DOCK4 (Ew-

ing and Kuntz, 1997) was used to identify STAT3 inhibitors (Mat-

suno et al., 2010). In addition, pharmacophore tools based on

key anchor residues between PPI partners has been used to

identify inhibitors of the p53-MDM2 interaction (Koes et al.,

2012). Utilizing information from native interactions is likely to

be a key enabling step in the efficient design of PPI inhibitors.

Conclusions and Future Perspectives
There are a number of reasons why developing therapeutics to

target PPIs is a challenging process. In general, high-affinity pro-

tein-ligand binding is a driver of drug efficacy and is one of the

key goals in early-stage drug discovery. This high-affinity binding

is derived from close contact at the protein-ligand interface, and

at protein surfaces a significant proportion of the ligand is

exposed to solvent rather than in contact with the protein.

Thus, for a given level of binding affinity, PPI inhibitors tend to

be larger than inhibitors of buried binding sites. An increase in

size brings with it a greater risk of PK/PD liabilities that may

lead to drug failure. For this reason, PPI targets are considered

to be inherently less druggable than traditional targets. Addi-

tional difficulties arise from the confounding effect of surface

flexibility on structure-based drug design, and the challenges

of target selection due to the complexity of cellular networks.

However, PPI inhibitors hold great promise for the generation

of selective therapeutics for a variety of diseases if these diffi-

culties can be overcome. For this reason, great efforts have

been focused on devising novel chemical, biological, and

computational tools to aid in the process of developing PPI inhib-
698 Chemistry & Biology 22, June 18, 2015 ª2015 Elsevier Ltd All rig
itors. These tools are described in this review. In the future, we

see four key areas where advances in our understanding and in-

creases in the utility of computational techniques will further the

development of PPI inhibitors.

To date, PPIs have been targeted only sporadically with small

molecules, at least partly because existing RNAi technologies

are unable to associate specific PPIs with specific cellular phe-

notypes. Indeed, knockdown of candidate targets with RNAi

can often be uninformative, due to the simultaneous depletion

of beneficial as well as disease-associated protein interfaces.

Therefore, since the current state of the art for target identifica-

tion and validation is unsuitable for the identification of protein in-

terfaces, it is not surprising that few PPIs have been validated as

prospective targets using current tools. The problem of target

selection is an area where computational approaches to sys-

tems biology hold great promise (Kreeger and Lauffenburger,

2010). However, it will be vital to use computational models to

design experiments that are able to verify which protein targets

within a cellular network are most amenable to selective interfer-

ence to achieve the desired goal. Molecular biology is now an

immensely powerful field, but probing a complex system re-

quires careful study. This is an area where academic work can

contribute significantly to industrial progress. Understanding

particular cellular pathways and the PPIs involved can take

many years of work, but is a fruitful field for publication during

this time and can be exploited at the conclusion for commercial

purposes. The development of methods for the high-throughput

identification of druggable PPIs for a given pathway or pheno-

type would significantly expedite the process of drug discovery

against PPIs.

Academic research can also prove useful in the related pro-

cess of validating difficult drug targets such as PPIs. Pharma-

ceutical companies are naturally wary of the risks associated

with developing PPI inhibitors, and this is particularly true for un-

validated protein targets. The process of target validation can be

a lengthy process and requires a coordinated multidisciplinary

approach. For this reason, large initiatives such as the NIH

Accelerating Medicines Partnership, the Wellcome Trust Seed-

ing Drug Discovery funding, and the UK Technology Strategy

Board Biomedical Catalyst funding will be a key part of target

validation in the future. Publicly available data on the therapeutic

potential of targeting all relevant proteins in the human genome

would greatly enhance decision-making processes. However,

the breadth and heterogeneity of genetic data will require clev-

erly designed and well-maintained databases.

Publicly available data will also enable the design of effective

screening libraries for PPIs. The results of many PPI screens

with many libraries, including those where no leads were ulti-

mately identified, will provide valuable information on whether

particular libraries will fare well against PPIs, and whether partic-

ular PPIs may not be amenable to small-molecule inhibition.

Unfortunately, both academia and industry are reluctant to pub-

lish negative results, and positive results are often delayed due to

patent issues. Even when screens with positive results are pub-

lished, a readerwill rarely haveaccess toall compoundstructures

and associated activities. Only with a complete dataset can a

comprehensive analysis be carried out.Weenvisage that the cur-

rent drive for ‘‘big data’’ will help to separate druggable and un-

druggable PPIs and validate effective screening libraries for PPIs.
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One area in the development of PPI inhibitors where experi-

mental data may not prove as fruitful is the identification of

cryptic binding pockets at protein surfaces. Such pockets are

often druggable but are not identified by X-ray crystallography

of the apo protein structure. Brute force experimental ap-

proaches using HTS or arrayed library synthesis can work but

the vast size of chemical space means that such approaches

will commonly fail. Conversely, computational methods can

search the conformational space of the protein surface and iden-

tify the presence or absence of druggable pockets. The two bar-

riers to achieving this are the two main issues that have always

existed in computational drug discovery: sampling and scoring

(Schneider, 2012). Significant progress has already been made

in circumventing the first of these hurdles, using enhanced sam-

pling such as REMD and long-timescale calculations with multi-

ple processors. It is the second barrier that is the current chal-

lenge, with many classical force fields failing to generate

accurate protein-structural ensembles (Beauchamp et al.,

2012) and quantum mechanical approaches still too computa-

tionally expensive for the analysis of such large systems. Further

increases in computing power will allow better models to be

applied to larger systems, and allow druggable cryptic binding

pockets to be identified from crystallographic apo structures.

These approaches will also improve our understanding of allo-

steric modulation of PPIs.

In summary, the development of effective therapeutics from

PPI inhibitors will be improved by the widespread dissemination

of relevant data from large multidisciplinary projects, the effec-

tive use of such data, and the exploitation of increased

computing power to accurately model ensembles of protein

structures. Science is already moving in these directions, but

academia and industry will need to work together in order to

turn this movement into positive outcomes for society.
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